EnGo – Smart Solar Street light pole is made by   EnGoPlanet ,the  sustainable solar lighting experts   recently launched a stylish new street light pole product which can even be retrofitted.The attachable design is of a solar cylinder module which can be quickly and easily mounted on any suitable pole for easy installation and disassembly.

Using 6 slim solar panels, with a solar cell efficiency of up to 21.2%, fixed to a hexagonal frame, ensures that half of them will face sun light at any time of the day.

The off-vertical cluster arrangement of the panels makes them less vulnerable to high-winds, less likely to accumulated dust and grime, and easier to clean.

The energy is harvested by a Victron SmartSolar MPPT 75-15. Bluetooth enabled, SmartSolar MPPTs include features which protect the battery from being too deeply drained, and have intelligent dynamic charge algorithms which work with the seasons to ensure the battery will at least periodically be returned to 100% charge.

EnGoPlanet use their own high-quality Lithium batteries, making the unit suitable for off-grid applications where night lighting is required. EnGo – Smart Solar Street light pole can also be used where a grid connection is present – in which case the units will run from their own batteries except where long-continued spells of poor weather require a power supplement to be drawn from the grid. This option is recommended for locations which are often cloudy, or shaded.

Alternatively, grid connected poles can be supplied without battery. Energy produced by the panels will be sent directly to the grid. Savings of up to 80% are possible.

EnGo – Smart Solar Street light pole  installations are also able to collect valuable environmental data which can be interrogated online. Other applications for the poles are for uses such as CCTV, sensors, wifi hotspots, and even phone charging points.

At Nocheski, we  look forward to installing  EnGo – Smart Solar Street light pole  soon

Justin Tyers


Victron Energy CANvu GX …information you can touch! It’s so convenient to be able access all your system information via touch screen – and because the Victron Energy GX is a sealed-unit, you can install it in some challenging environments!

P67 rating of the Victron Energy  CANvu GX means that it is completely protected against dust ingress, and can even withstand half an hour’s immersion in water 1 metre deep!

The Victron Energy CANvu GX is the latest addition to the Venus family – the information gateway which allows you to set-up, monitor and manage all the component parts of your private energy installation. In exactly the same way as you use the CCGXVenus GX; and Octo GX – the Victron Energy CANvu GX gathers data from your Inverter/ChargerBattery MonitorSolar Charge Controller, and batteries to allow optimal communication between components, maximising battery-charging and solar harvest.

And, of course, it allows you to interrogate the status of each device. But amongst the whole family, it is the Victron Energy CANvu GX which is ideal when the information is required to be displayed outdoors, or in difficult environments.

The arrival of the Victron Energy CANvu GX will be welcomed particularly by those users who work in the open. It is entirely at home on board vessels at sea, or on building sites – in applications such as the control panel of Hybrid Generators. It is also ideal in factories where industrial processes are wet, or dusty.


The unit comes with a dash/fascia mounting kit:


Please note that in order to operate the Victron Energy  CANvu GX you will need an IO Extender and wiring kit, and that this must be ordered separately:

The full colour screen of the Victron Energy  CANvu GX will be familiar both in appearance and size to anyone who has seen or used the CCGX. The system offers 3 VE.Direct ports and one USB port; a second, separate CAN-bus port; and it can receive digital inputs. It doesn’t have a buzzer. WiFi is not built-in, but a USB WiFi dongle can be attached. A comparison of features between all members of the GX family can be found here.

Justin Tyers


Lithium SuperPack batteries – an all in one solution .These new Lithium-Ion, LiFePO4 chemistry batteries are often an ideal replacement for many 12V and 24V marine, automotive, caravan, motorhome, work vans and similar battery applications. It might even be for an overland motorcycle if using the smallest 20Ah version; to recharge a camera, phone or laptop for instance.

Other examples – take a typical small boat or van which may have a 110Ah to 220Ah lead-acid leisure battery for light continuous loads such as lighting, laptops, phones, instruments, powering a diesel heater, a fridge etc. And for shorter term loads maybe add a small inverter to charge power tools, run a small microwave or travel kettle for example. Using one SuperPack battery it matches well with the Phoenix Inverter VE.Direct 250VA – 1200VA range. Maybe you’ll add in around 100 to 200Wp of solar panels too using a small MPPT.

Regardless of the use, whichever SuperPack you choose it’ll be lighter than lead, can be smaller if you wish or give you more Wh in the same space – plus give you around 5 times the cycle life.

The main difference to Victron’s other lithium (often more kWh) offerings are the SuperPacks keep everything in one package, by having an integrated BMS and safety switch built-in. No additional components are needed as the internal switch will disconnect the battery in case of over discharge, over charge or high temperature. Simple, compact and safe.

If you are considering a new battery don’t immediately discount Lithium as being too costly. Whilst it is true that the capital cost of Li-ion is greater than that of quality AGM or Gel batteries – it is also true that the cost of ownership can be less than lead acid types. Much depends on your application, but rest assured – life with Li-ion is far less hassle than lead.

Over the last 8 years on my sailing yacht I’ve run AGM lead leisure batteries and Lithium-Ion propulsion batteries. Initially it was AGM for propulsion before discovering the effectiveness of Lithium. That journey taught me a lot about loads, capacity, cost and battery life – it’s one of the reasons why I think we’ve reached a tipping point and why these new SuperPack batteries may just be the ticket for your next project or battery replacement.

If in the first instance you are unfamiliar with AGM vs Lithium, then here’s a blog that explains that.

When to use a SuperPack?

Every battery size and type has it’s own particular use. For instance you may use the Lithium battery 12,8V & 25,6V Smart and the Lithium battery 24V (LiFePO4 & NMC chemistries) ranges (all of which have an external BMS) in quite different applications to the new SuperPack range. So, where to use the SuperPacks?

When it comes to replacing lead acid type batteries such as AGM and Gel in many applications, the SuperPack range can be considered the next generation after lead – making it far easier to replace lead with lithium. The only caveats being replacement is down to certain parameters being met, namely – Capacity (Ah), Voltages (12.8V & 25.6V), Discharge and Charge currents (C rates). Do in that case be sure that your chosen replacement fits your criteria by checking the datasheet and be aware the SuperPacks can be connected in parallel, but not in series. Hence in that case you would consider the other Victron lithium products named above.

The Lithium SuperPack

Victron Energy’s recently introduced Lithium SuperPack range comes in the following capacities and voltages:

12.8V & 25.6V Lithium SuperPack batteries:

  • 12.8V – 20Ah
  • 12.8V – 60Ah
  • 12.8V – 100Ah
  • 12.8V – 200Ah
  • 25.6V – 50Ah

These SuperPacks will give you 2,500 cycles to 80% depth of discharge at 25°C, much more than lead.

Comparison: SuperPack 60Ah LiFePO4 vs 90Ah AGM

Let’s compare the 60Ah Li-ion to say a typical 90Ah AGM battery discharged to the commonly accepted economic cycle life of 50% discharge for lead. That would give us 600 cycles at that DOD for the AGM compared to 2,500 at the even deeper discharge of 80% for the LiFePO4. Already you can see you may need to replace your lead-acid type battery 2 to 4 times as often as the Lithium. Of course loads, operating conditions and calendar life have to be factored in too. Regardless you get the idea – Lithium does more and lasts longer.

The benefits of Lithium don’t stop there though. Whilst LiFePO4 chemistry is considered the safest of them all, it’s worth considering other factors too to decide whether the reduced weight and volume of say NMC is of more importance for your application than LiFePO4 for example. Victron Energy do both types. These star graphs do a good job of explaining the differences: https://batteryuniversity.com/learn/article/types_of_lithium_ion

60Ah SuperPack

90Ah AGM

Weight
9.5kg 27kg
Size (mm)
229 x 138 x 213 350 x 167 x 183
Useable energy @ 25°C
614Wh 540Wh
Cycle life
2,500 cycles 600 cycles
Cost
x 2.5 (approx)  x 1

Notes for the table above:

  • Useable energy and cycle life are based on 80% depth of discharge for Li-ion and 50% for AGM, these being considered the most economic use of those battery types.
  • Higher loads with lead will further reduce available Wh (Peukert’s Law) when compared to Li-ion.
  • Capacity is also reduced for both types by temperatures below their 25°C temperature rating (see their respective datasheets)

Make what you will of the above and whilst you are pondering the pros and cons don’t forget to take these additional factors into account for the comparison above.

  • Shipping: If you are replacing your lead from 2 to 4 times as often as Li-on and the fact that the lead weighs around 3 to 4 times as much (depends on Li-ion chemistry used) – then do consider the extra shipping costs.
  • Voltage stability: The voltage profile is far flatter for Li-ion compared to lead.
  • Voltage sag: Subject to the load, voltage sag with lead is significant compared to Li-ion.
  • Li-ion has much faster charge times and if charging from a generator it saves on generator runtime.

Other factors to consider

Is the above enough to convince you of why Lithium might be a better alternative than AGM or indeed Gel? Personally I’m sold on Lithium, but if you are not here’s a few things further to consider:

  1. A lead-acid battery will fail prematurely due to sulfation if it operates in deficit mode for long periods of time (i.e. if the battery is rarely, or never at all, fully charged). It will also fail early if left partially charged or worse, fully discharged.
  2. By comparison a Lithium-Ion battery does not need to be fully charged. This is a major advantage of Li-ion compared to lead-acid which needs to be fully charged often to prevent sulfation.

  1. Efficiency. In several applications (especially off-grid solar), energy efficiency can be of crucial importance. The round-trip energy efficiency (discharge from 100% to 0% and back to 100% charged) of the average lead-acid battery is 80%.
  2. The round-trip energy efficiency of a Li-ion battery is 92%.

  1. The charge process of lead-acid batteries becomes particularly inefficient when the 80% state of charge has been reached, resulting in efficiencies of 50% or even less in solar systems where several days of reserve energy are required (battery operating in 70% to 100% charged state).
  2. In contrast, a Li-ion battery will still achieve 90% efficiency even under shallow discharge conditions.

Make the switch?

Are you ready to make the switch from Lead to LiFe? If you’ve considered all the above I suspect you might be. And if you need more useable Ah why not run the sums on say a 100Ah Lithium SuperPack vs 220Ah AGM using the process I have above. Or indeed a 200Ah Li-ion SuperPack vs your choice of lead.Lithium SuperPack batteries – an all in one solution

Don’t forget too that Lithium has little or no Peukert effect when compared to Lead types. This is especially important when considering loads with lead-acid higher than 0.05C (Battery Ah divided by 20 or Ah multiplied by 0.05). In other words for a 100Ah AGM with a Peukert of say 1.15 or more and discharging at 0.25C (25 Amps in this case – which is 5 times the 20 hour rate) there will be significant reduction in capacity – as there will be at colder temperatures too. Li-ion has a Peukert of around 1.05 when compared to lead of around 1.15 to 1.25.

So – if you were discharging that 100Ah lead at 5 Amps (the 20 hour discharge rate at a temperature of 25 degrees centigrade) then the full capacity of 100Ah is still availaable and it’s not shrunk due to Peukert. But now if it were 0.25C, it’ll be around 80% of that original 100Ah capacity – or less, subject to load type and duration.Lithium SuperPack batteries – an all in one solution

The bottom line is you no longer have the Ah you purchased, whereas with Lithium there is little to no effect, helped by a lower Peukert and good voltage stability. That is especially important with constant inverter loads – a place where lithium shines. If you want to learn more about Peukert and run a spreadsheet to see such effects, then I have found this link most helpful.

Finally and one I’m always grateful of is vastly reduced charge times, no more waiting for hours of lead absorption charging to get from 80% to 100% SOC. Conversely Li-ion flies up to around 98% SOC in bulk with those last few percent in absorption to fully balance the cells – and unlike lead you don’t always have to fully charge to 100% as often. Note that your 12V charging system needs to accommodate 14.2V – 14.4V ‘absorption’ and ‘13.5V’ float. If charging from an alternator also note the maximum continuous charge currents for the 12.8V range, by checking the datasheet.

Downsides

Not wanting to sound too evangelical, we also need to consider the few downsides of Li-ion.

  • Higher upfront cost and to some extent higher capital risk.
  • Charging is restricted to the +5°C to +45° range, subject to an internal means of blocking the charge source when the temperature is below +5°C. Note this is currently automatically possible with Victron MPPTs when used in conjunction with the Smart Battery Sense for instance. Other products are being worked on to achieve this too and documentation to that effect will be updated in due course.
  • The SuperPack (unlike other Victron Lithiums) is not designed for series connections.
  • The peak and maximum continuous discharge current of the SuperPack range is not as much as some of our Lithium batteries as its related to the BMS and the disconnect being internal to the battery – so do check the datasheet to make sure the current peak and discharge ratings suit your needs – or choose from the Lithium battery 12.8V & 25.6V Smart or the Lithium battery 24V range or build a parallel SuperPack bank.Lithium SuperPack batteries – an all in one solution

Conclusion

Whatever your decision when purchasing new batteries, maybe it is time to give the Lithium SuperPack batteries a chance. There’s LiFe after Lead you know – but as I’ve shown that all depends on what you want to achieve. Is it less weight, less volume, maybe it’s capacity or voltage or any of the multitude of factors that go into choosing a battery system.Lithium SuperPack batteries – an all in one solution

Whatever you choose Victron have plenty of choice – with a large range of battery types and sizes: https://www.victronenergy.com/batteries

John Rushworth


How to Choose Solar Panels in Ghana will always be a major question . This is due the the wide assortment of varieties available and the lack of expertise in this specialized area of energy.Solar panels provide renewable energy for your home, which helps the environment and reduces your electricity bill. But not all panels are alike. The material a panel is made of, what solar inverter it uses, and how it mounts to your roof determines what environments it works best in. Before you buy solar panels for your home, research the different factors and decide which option is right for you in Ghana.

Ghana has an average effective sunshine of 5.5 hours daily .As a considerable investment, it’s worth evaluating a solar power system for your home before have it installed. Doing your research and seeking professional advice can help you to make an informed decision. Here are a couple of other things to consider before making the change:

Types of Solar panels in Ghana

There are different types of solar cells, with different efficiencies. Although their names might sound confusing, it is good to know at least the name not to be out-of-topic if your supplier happens to mention this.Popular solar panel brands in Ghana include ,Jinko solar,Victron Energy,LG,Yingli and Canadian Solar.Its however important to seek the advice from a professional as there are many knock offs or  fake products on the Ghana  market.

Monocrystalline silicon offers high efficiency and good heat tolerance characteristics with a small footprint. Polycrystalline (or multi-crystalline) silicon cell based solar panels are now the most popular choice in residential installs. There are also Amorphous (or thin-film) silicon cells, which use the least amount of silicon and are not very efficient. For an equivalent wattage, a crystalline panel will be smaller than an amorphous panel.

monocrystalline solar panels in Ghana installed on a rooftop

Choose monocrystalline solar panels for efficiency. Monocrystalline solar panels are the best at converting light to energy because of their high silicon purity. That being said, monocrystalline solar panels are often the most expensive—this option is best if you want the highest productivity and price tag.

  • Monocrystalline solar panels cost between $150-350 USD per panel.
  • Monocrystalline solar panels also produce the most waste when they’re manufactured. If you’re buying solar panels to go green, another material may suit your needs better.
  • All solar panels are made of silicon. The higher the silicon purity, the better your panel will work, which is why monocrystalline solar panels in Ghana are ideal.

Go with polycrystalline solar panels for an environmentally-friendly option.Polycrystalline solar panels utilize all of the silicon material they’re manufactured with, making them the “greenest” panel option. Polycrystalline solar panels are also cheaper than monocrystalline panels, though they are not quite as efficient.

  • Polycrystalline solar panels in Ghana  usually cost between $100-250 USD per panel.
  • other school of thought claim that Polycrystalline solar panels do not do as well in warm temperatures and that Hot climates with temperatures regularly above around 80 °F (27 °C) are not suitable for polycrystalline panels.This may be true depending on the installation technique utilized.Its important to allow steady air flow underneath the solar panels to produce cooling effect.

Buy thin-film solar panels for the most budget-friendly option. Thin-film panels are cost-efficient to make and are usually the cheapest option. They also, however, degrade faster than other panels. Choose thin-film if you need a simple solar panel that may need more repairs over the years.

There is also another variation called solar cloth i.e photovoltaic textiles we have developed are as thin as bank notes and flexible enough to wrap around a pencil, which allows their use on virtually any type of surface

  • Thin film solar panels usually cost between $125-200 USD per panel.
  • Thin-film panels usually need the most space and are less practical for smaller homes. They may need up to twice as much room as a mono- or polycrystalline solar panel with the same energy output.

Buy amorphous solar panels for smaller homes

Amorphous solar panels are a subset of thin-film solar panels. Generally, they are smaller than other thin-film panels. Through a process called “stacking,” which involves multiple layers of amorphous silicon cells, these panels can reach high levels of efficiency, around twice as high as other thin-film solar panels.

  • Amorphous solar panels are more expensive than other thin-film panels.
  • Amorphous solar panels generally cost between $100-200 USD per panel.

Continue reading →


Solar Cloth:producing power from textiles everywhere .we always need to keep our eye on emerging technologies and how they may relate to our products, both now and in the future. Solar cloth is one such technology that has certainly got me excited. You can see the solar cloth panels embedded in the mainsail of the yacht above, which is ideal as deck area for conventional modules is limited on sailing yachts.

Solar cloth is not just for boats though. Yesterday I spoke to Alain Janet from solarclothsystem.com and learned that it can also be integrated into canopies, to provide power for outdoor events for example or indeed to recharge electric vehicles. Even an awning for an RV or overland 4 x 4 could probably use such a system too.

However, Alain is a sailmaker to trade and naturally it is in that field that his first system is to be deployed, with UK Sailmakers (France). The UK Sailmakers group has over 50 lofts and service centers around the world, so to my mind they are well placed to bring this technology to market.

Below is a press release, concerning these new PowerSails.

SOLAR SAILS TO POWER TRANS-ATLANTIC RACER

Defi Martinique

Frenchman Daniel Ecalard has entered his Open 50 DEFI MARTINIQUE in the 3,500-mile Route du Rhum from St. Malo, France to Guadeloupe in the Caribbean. His goal: to complete the race with zero carbon emissions. Ecalard plans to carry no diesel for generating electricity in a boat that bristles with electronics that do everything from communicating and navigating to making water and moving the boat’s canting keel.

He will use the boat as a test bed for clean energy solutions. His primary source of power will be solar panels laminated into his Titanium® mainsail to cover all the boat’s electrical needs. The sails are being made by UK Sailmakers France, which has developed the technology for solar cells that can be either laminated to new sails or affixed to existing sails. This exclusive technology is called PowerSails and is being developed by Alain Janet, owner of UK Sailmakers France.

These cutting-edge, light-weight films can generate electricity in low light and indirect sunlight. They are supple enough to handle the sail being luffed as well as folded. The panels will be put in the upper part of the main, above the third reef.

Janet says that the mainsail for DEFI MARTINIQUE is expected to produce on average 500 Watts per hour, budget allowing. Ecalard’s boat was built in 1998 for that year’s BOC race. In 2002-2003, Brad Van Liew won the 50-footer division of the 30,000-mile Alone Around Race by winning all four legs with this boat. She still holds the 24-hour distance record for a singlehanded 50-footer when she went 345 miles in a day. In 2008, she won her class in the Newport Bermuda race. In 2010 the boat starred in the Hollywood movie “Charlie St. Cloud” where Solar Cloth:producing power from textiles everywhere

Ecalard’s ultimate goal is to build a sailing freighter for working the inter-island trade in the Caribbean. For more information about this project go to: http://seafretcaraibes.fr/

Credits

Our thanks to Adam Loory of UK Sailmakers International for the interview and text above, with RDR (Route du Rhum) skipper Daniel Ecalard.

As a footnote, we also wish Alain all the best for his PowerSails project. And if there is a place for Victron to assist, then I’m sure we will as emerging markets and technologies are surely a key to business growth for all. So, if on your Victron travels you too come across something new, that is noteworthy of a post here on the Victron blog, do let us know.

John Rushworth

 


Siemens partners WestPark for industrial park in Takoradi

Siemens has announced it has signed a Memorandum of Understanding (MOU) with WestPark Enterprises to develop an expandable microgrid solution for the fast-growing industrial and business park based in Takoradi, Western Ghana.

The Westpark aims to eliminate many of the challenges faced by companies doing business in Sub-Sahara Africa, such as access to reliable power, water, broadband internet and transport.

 The new industrial park is poised to accelerate the transformation of Takoradi – Ghana’s third-largest city.To lay the foundations for reliable, competitive and efficient energy, WestPark has entered into a partnership with Siemens.

As part of the agreement, Siemens will develop a 250kW microgrid that controls the energy generation for the initial phase of buildings to be constructed at WestPark.

Siemens will design the microgrid so that the first phase of WestPark can be powered entirely by renewable energy and therefore provide a sustainable and cost-effective solution for tenants.

On-site photovoltaic panels will power the microgrid and a back-up battery storage solution will be sourced as well.

The grid can be expanded as more buildings are added with the aim of ensuring that the park remains powered by renewable energy.

According to Sabine Dall’Omo, CEO of Siemens Southern and Eastern Africa, “This project is perfectly in line with Siemens’ vision for future business in Ghana and other African countries. As a company, we are continuously looking for new responsible and efficient energy and infrastructure solutions, and our collaboration with WestPark is a good example of how we can support partners with similar goals.”

Siemens is specifically committed to economic growth across Africa, and in doing so in a forward-thinking manner by implementing environmentally sustainable solutions that will help its partners and customers succeed in today’s environmentally-conscious global market.

Siemens AG is a German conglomerate company headquartered in Berlin and Munich and the largest industrial manufacturing company in Europe with branch offices abroad. The principal divisions of the company are Industry, Energy, Healthcare, and Infrastructure & Cities, which represent the main activities of the company.


Lead acid battery charging in cold weather

This blog covers lead acid battery charging at low temperatures. A later blog will deal with lithium batteries.

Charging lead acid batteries in cold (and indeed hot) weather needs special consideration, primarily due to the fact a higher charge voltage is required at low temperatures and a lower voltage at high temperatures.

Charging therefore needs to be ‘temperature compensated’ to improve battery care and this is required when the temperature of the battery is expected to be less than 10°C / 50°F or more than 30°C / 85°F. The centre point for temperature compensation is 25°C / 77°F.

Cold weather also reduces a battery’s capacity. This is another factor that needs to be taken into consideration, along with the load and charge rate compared to the battery capacity (Ah). Both of these factors affect the correct and consequent sizing of a battery for your particular application.

Battery capacity in Ah is usually quoted as a 20 hour capacity rating at 25°C. The discharge rate or load can be written as 0.05C where for example C is the load factor of the 20 hour rated battery capacity at 25°C.

Worked examples: If a 100Ah 20hr rated battery then a 0.05 load would be 100 x 0.05 = 5 Amps or 100/20 which is also a 5 Amp discharge rate over that 20 hour period. A 10A load on a 100Ah 20 hour rated battery would therefore be a 0.1C discharge rate, a 0.2C discharge rate on a 200Ah would be 40A and so on. C ratings also relate to charge rates as well as discharge rates.

When buying a battery you may see its Ah quoted at 20 (the standard rate), 10 and 5 hour rates so you can see how load ‘shrinks’ the Ah. Some even quote at 25 hour rates, which often fools people into thinking they are getting a bigger battery than standard.

To recap – capacity reduces at low temperatures, as it does for higher discharge C rates above the 0.05C 20 hour rate. This reduction in capacity due to higher discharge rates is due to Peukert’s Law.

Graph showing the effect on battery capacity due to temperature and load:

Lead acid battery differences

Lead acid batteries come in a variety of types:
  • Wet lead with the ability to top up each of the six cells with de-mineralised water.
  • The so called ‘sealed’ wet lead leisure or rather maintenance free battery. These cannot be topped up and often have a green go or red no go cell inspection indicator.
  • AGM (Absorbent Glass Mat) valve-regulated lead-acid (VRLA), where the electrolyte is absorbed in a glass mat.
  • Similar to the AGM, but the electrolyte is held in a Gel.

All of the above are however lead based (as opposed to lithium) technology. Besides lithium batteries Victron Energy sell VRLA AGM and Gel monoblocs (6 x 2V cells in series) due to their superiority over wet lead monobloc types. Victron’s range consists of:

  • Gel (Better cycle life than AGM).
  • AGM (Better than Gel for higher loads and well suited for use with inverters).
  • AGM Telecom. Designed primarily for Telecom applications, but also excellent ‘footprint space savers’ for marine and vehicle applications.
  • AGM Super Cycle (Best if frequent discharge to 60-80% DOD is expected).
  • Lead Carbon Battery (Improved partial state-of-charge performance, more cycles, and higher efficiency).

Additionally Victron also sell specialist lead acid type batteries.

  • OPzV 2V individual battery cells. Long life, high capacity gel.
  • OPzS 2V individual battery cells. Long life high capacity flooded tubular plate batteries for specialist solar applications.

Temperature compensation and charging

Now we know about the kind of batteries, capacities and loads we are dealing with, we need to put some numbers together for temperature compensation and charging.

The recommended temperature compensation for Victron VRLA batteries is – 4 mV / Cell (-24 mV /°C for a 12V battery).

Besides accounting for cold weather charging the charge current should preferably not exceed 0.2C (20A for a 100Ah battery) as the temperature of the battery would tend to increase by more than 10°C if the charge current exceeded 0.2C. Therefore temperature compensation is also required if the charge current exceeds 0.2C.

How to achieve temperature and voltage compensated charging

There are a range of Victron products to achieve this.

With our range of inverter/chargers and since VE.Bus firmware version 415 was released some time back this has ensured that:

– Temp compensation continues down to -20C

– This is for all voltage set-points, except for float, storage and the start of bulk charging

– As soon as the temperature goes below -30C, the compensation mechanism is disabled (normal charge voltages are applied) and a warning is shown.

For systems that don’t use an inverter/charger – we can use Smart Battery Sense to ensure that charging sources provide optimal voltage and temperature compensated charging to your batteries, by wirelessly transmitting accurate battery voltage and temperature values to your Solar Charge Controller or Smart battery charger.

This information is then used to set the ideal charging parameters, resulting in more complete, faster charging – improving battery health and therefore extending battery life.

The Victron Toolkit app allows you to calculate cable sizes and voltage drop. Here’s an example where cable length is the round trip of the positive and negative battery charging cables. This is so you get an idea of what Smart Battery Sense automatically takes into account to ensure the correct charge voltage goes into the battery, by ensuring the charge voltage is compensated for and corrected due to any cable losses.

Victron’s range of SmartSolar MPPT Charge Controllers all work with the Smart Battery Sense. In fact I’ve just fitted one to my motorhome, along with the required Smart Battery Sense, due to the fact the leisure battery temperature location when compared to the location of the controller can have a difference of up to ten degrees. Definitely a case for ensuring accurate temperature compensation.

Other products can be connected too by using what we call ‘VE.Smart Networking support’. See the VE.Smart Networking page.

Conclusion

With the above solutions I know I’ll be happier now that my batteries are getting exactly the right charge due to optimal temperature and voltage compensation.

Why not make sure you are doing the same…

John Rushworth


Ghana Hopes Lithium Load Will Lure Automakers plus drive solar

Ghana might become the world’s next hot spot for lithium, after large quantities of the element and other base metals have been identified in the Ashanti and Central regions, the Ghana Minerals Commission said.

While it’s too early to confirm the presence of commercial quantities, Ghana officials hope this discovery will capture the attention of Tesla and other electric car manufacturers that use lithium-ion batteries, such as Nissan Motor Co. Ltd., General Motors Co., and Ford Motor Co.

“The country can play a leading role in the electronic car business if the mineral is discovered in commercial quantity,” said Chief Executive of the Minerals Commission Kwaku Addai Antwi-Boasiako.

John Peter Amewu, minister for lands and natural resources, recently led a nine-member Ghanaian delegation to attract investors to the mining sector as part of the 2018 Mining Indaba Conference last month in South Africa.

Bloomberg Law

Since early mining days, gold has been the focus of mining in Ghana, particularly in the Ashanti region. The world’s second-largest producer of gold after South Africa is Ghana, where diamonds and base metals such as manganese ore, iron, and bauxite are mined as well.

While local news reported that lithium is a new discovery in the Volta region, Isaac Abraham, acting head of communications for the Ghana Minerals Commission, told Bloomberg Environment March 20 that investigations still need to be done there. Only the Ashanti and Central regions of Ghana that have confirmed the occurrence of lithium, he said.

The element “has existed for some time,” Abraham said, as the Egyasimanku Hill lithium resource was defined by the Ghana Geological Survey in 1962 but remained unnoticed for years.

Commercial product won’t come for years, according to Christopher Perrella, chemicals analyst at Bloomberg Intelligence.

“It will be a number of years until you see commercial product. It may be a decade before you see commercial extraction,” he said. “Extraction and processing it chemically so that battery makers would use it is a significant investment in green fields. It must then must meet quality standards. This takes capital and industrial know-how.”

Ghana does have a location advantage. “You can get it out in ocean and into global market, but it depends on global demand in 10 years and that’s so far out,” Perrella adds.

Valuable Lithium

The lightest metal on the periodic table, lithium has a unique chemical profile and is often alloyed with aluminum, copper, manganese, and cadmium to make high-performance alloys for aircraft. A derivative, lithium hydroxide, is used to absorb carbon dioxide in space vehicles. Lithium compounds also are used as mood-stabilizing drugs.

Lithium batteries are common in a variety of consumer devices—from laptops, mobile phones to golf carts and electronic cigarettes—and has industrial applications as well, including heat-resistant glass and ceramics, lubricating greases, and fusion fuel in staged thermonuclear weapons.

The lithium industry is projected to grow over the next five years, according to a 2017 report from consultancy IbisWorld.

This growth and the rising green movement will fuel demand for electric vehicles and energy storage systems that use lithium-ion batteries. Overall, revenue is projected to grow at an annualized rate of 1.4 percent over the five years to $965 million, according to IbisWorld.

The element is also part of rechargeable batteries in electric cars and aluminum-lithium for spacecraft. Neither Tesla Inc. nor SpaceX responded to Bloomberg Environment’s request for comment.

IronRidge Agreements

IronRidge Resources Ltd. last year said it identified “multiple, significant outcroppings of lithium in Ghana.” Its mining operations now map and sample the region.

The Australian company, through a joint venture with Ghanaian companies Obotan Minerals Ltd. and Merlink Resources Ltd., now holds the rights to acquire historic Egyasimanku Hill, which surveys indicate has a potential deposit of 1.48 million tons.

“IronRidge has the Central Region,” Abraham told Bloomberg. “There is also lithium in part of the Ashanti Region, but no one has done any work on that area as of now.”

The company recently expanded its lithium interests in Ghana, including an agreement with Ghanaian company Joy Transporters that provides IronRidge with exclusive rights to an exploration license in the Central Region town of Saltpond and lithium project in Cape Coast.

IronRidge also has exclusive rights to a prospective lithium license portfolio covering 1,177 square kilometers (454 square miles) in neighboring Cote d’Ivoire.

“Enhancing and consolidating the company’s ground position along the Cape Coast lithium project corridor is an integral step in the company’s strategy of building a lithium project pipeline in Ghana,” IronRidge Chief Executive Officer Vincent Mascolo said in a statement.

 

By Diosa B.G. Woods


How solar is changing Ghana’s real estate market ? If you are involved in the business of constructing a new building in Ghana, whether it’s a logistics center, a manufacturing plant or a multi-family residence in East Legon, most likely installing solar panels was mentioned at some point in the process. Solar panels are being integrated into more and more new constructions, and some cities like Tema and Accra are leading the way.

Our research also indicates that there is a high demand for 2-3 bedroom houses and the cost of land and litigation has pushed the direction of real estate developments into apartment complexes rather than single detached or semi detached homes. Rooftop solar is a great investment that can generate hundreds of thousands (if not millions) of dollars and has a return on investment of just 3-5 years. It increases the life of the roof, and the value of the property. Every owner, architect and general contractor should consider how they can integrate solar in their new construction.

This renewable energy revolution is a global one and many new home owners in Ghana are currently considering going green in their next real estate project, .with an average daily effective sunshine hours of 5.5 hours, Ghana is a great place to go solar. There is generally a hunger for renewable energy options even though many do it for  environmental and energy security reasons. Another school of thought indicates that the rising costs of diesel and the effects of pollution are gradually giving diesel generators an “uncool”  or even “savage” tag. How solar is changing Ghana’s real estate market ?

But where do you start? Should you integrate solar into new construction or just wait until later?

No Muss, No Fuss

The first thing to note is that adding solar to a new building doesn’t mean you need to redesign the whole building. In fact, only minor adjustments, if any at all, will be needed. However, there are some things to consider that will make the process of switching to solar easier. By planning ahead and integrating solar during construction, you can tap into efficiencies during construction and save money.

An nocheski installer installing a Victron Energy multiplus compact inverter

For example, you should ensure the structural load of the roof can support a solar PV system. Most roofs can support solar without structural reinforcements, but if your current building design can’t support solar, you want to catch this early on before you begin construction.

Brighten up the Bottom Line

You can also integrate solar into your building design, saving money by making the solar installation process more efficient. A few examples of this include strategic designs that may consider ventilation, insulation and air conditioning units, and integrating the solar system’s electrical wiring and equipment into your building design. This type of planning will lower your overall cost of solar installation whilst adding an energy efficient tag to the project.

Get In and Get Out

The last thing to consider is that installing solar during construction minimizes the disruption to your operations. Once your building is operational, installing solar will have minimal impact on your day-to-day work, but it is always better to complete the installation before people are in the building. That way, you will be producing clean energy and saving money from day one. How solar is changing Ghana’s real estate market?

The Future is Bright

Thousands of companies install solar after the building is complete, but some forward thinking can make your solar installation cheaper and more efficient. The process of transitioning to solar can be daunting. As the CEO of Royal Estates Group, Mr. Stanley Owusu shared regarding the company’s recent transition to solar panels, “I couldn’t make heads or tails of it.” They turned to a Nocheski solar to help them navigate the design process, solar installation.The result is the installation of several Victron multiplus inverters in Oasis estates projects.The evidence is clear that whether you’re a business owner or a commercial real estate developer, solar is an excellent investment opportunity. Integrating solar into a building during construction only gives an added boost to the economics.Real estate stakeholders such as architects, builders and homeowners may contact us on 0244270092 or email [email protected] for inquiries and how they may benefit from expert advice for prospective real estate projects.


Lithium-ion batteries in Renewable energy resources – such as wind, water or solar solutions – hold great promise. They could provide energy while overcoming Africa’s infrastructural challenges. But this energy would still need to be stored. Lithium-ion batteries might provide a solution. The Conversation Africa asked Bernard Jan Bladergroen about the challenges and opportunities.

What are lithium-ion batteries and what are its benefits?

Lithium ion, or Li-ion, batteries are a type of rechargeable battery. They are a popular choice because when well looked after, they can be drained and charged literally thousands of times which makes them superior to commonly used lead acid batteries.

Lithium-ion batteries – like other batteries used to store energy – act as a buffer between power generation and consumption. The batteries are charged when power is available from, example, a wind turbine, solar panels or the grid, and then provide power when it’s not.

If Lithium-ion batteries could be manufactured in Africa, on the appropriate scale, they would become cheaper and power users could rely more on renewable energy than they do now. This would open the path for clean, sustainable energy, mitigating the effects of climate change. It could also boost economies.

Africa already has part of the solution: photovoltaic (PV) panels are common and the energy they produce in South Africa is approximately  40% cheaper than that generated from fossil or nuclear fueled power stations. The main drawback of PV power is that it can only really be generated between 5-7 hours daily (depending on what part of the continent one is located. That’s not when most people need to use it, so it has to be stored cheaply.

Lithium-ion batteries have been commercialized elsewhere in the world. Why not in Africa yet?

Li-ion batteries are used in many commercially available products, like power tools, toys, electric bikes, laptops and mobile phones. Large Li-ion battery packs in home and grid-power applications are becoming rapidly more popular in many countries, including Africa.

There are only a few Li-ion battery factories in the US, Poland, South Korea, Japan and China. Most of the companies that run them work closely with electric vehicle manufacturers and consumer good production sites. Some of the top 10 companies manufacturing the batteries include; Panasonic, Toshiba, Samsung SDI, LG-Chem and Tesla.

There are a few small companies in South Africa who assemble battery packs using imported cells. And, to the best knowledge of the author, there’s only one facility on the African continent that has the capability to produce Li-ion battery cells at pilot scale: the University of the Western Cape’s Energy Storage Innovation Lab. The lab has already been laying the groundwork for industrial Li-ion batteries assembly. Though I cannot say with certainty that Li-ion cells are not being produced elsewhere in Africa, it would be hard for a commercial plant to go unnoticed as it would have to be very large to be profitable.

freedom won lithium-ion battery installed in Accra

There is huge opportunity. South Africa has almost 80% of the world’s known reserves of manganese – an important component of the most popular battery. Because the companies that produce Li-on batteries have deep pockets, and because the price of manganese is relatively low, they have been able to import it from South Africa.

A growing market will eventually justify the creation of a local battery production plant. But to produce batteries at a competitive price, a large scale facility with an investment of at least $1 billion is required. Only in a facility that produced millions of excellent quality cells per day would the cost per cell be able to compete with cells produced on other continents. It will be challenging to raise the required capital in Africa.

What would be the major challenges in commercializing Li-ion across the continent?

To achieve commercialization across the continent, the cost of a Li-ion battery system needs to be lower than any alternative energy storage system. Currently, Li-ion batteries cost between $500-$1000/kWh, significantly more than Lead Acid batteries, but since they last much longer than Lead Acid, they can offer a better deal.

The desired shift away from our unsustainable fossil-fuel-based economy can be realized when we produce Li-ion batteries that last many years and cost as little as $300/kWh. Economy of scale is crucial to achieve these costs.

The electrification gains could be huge. Renewable energy – such as wind or solar solutions – combined with an energy storage device that could deliver electricity at the cost of electricity from a power station would be a game changer. And because Africa’s power distribution network is still underdeveloped, investors in the device could see returns sooner than in regions with a fully developed transmission network that’s already paid for.