Lithium SuperPack batteries – an all in one solution .These new Lithium-Ion, LiFePO4 chemistry batteries are often an ideal replacement for many 12V and 24V marine, automotive, caravan, motorhome, work vans and similar battery applications. It might even be for an overland motorcycle if using the smallest 20Ah version; to recharge a camera, phone or laptop for instance.

Other examples – take a typical small boat or van which may have a 110Ah to 220Ah lead-acid leisure battery for light continuous loads such as lighting, laptops, phones, instruments, powering a diesel heater, a fridge etc. And for shorter term loads maybe add a small inverter to charge power tools, run a small microwave or travel kettle for example. Using one SuperPack battery it matches well with the Phoenix Inverter VE.Direct 250VA – 1200VA range. Maybe you’ll add in around 100 to 200Wp of solar panels too using a small MPPT.

Regardless of the use, whichever SuperPack you choose it’ll be lighter than lead, can be smaller if you wish or give you more Wh in the same space – plus give you around 5 times the cycle life.

The main difference to Victron’s other lithium (often more kWh) offerings are the SuperPacks keep everything in one package, by having an integrated BMS and safety switch built-in. No additional components are needed as the internal switch will disconnect the battery in case of over discharge, over charge or high temperature. Simple, compact and safe.

If you are considering a new battery don’t immediately discount Lithium as being too costly. Whilst it is true that the capital cost of Li-ion is greater than that of quality AGM or Gel batteries – it is also true that the cost of ownership can be less than lead acid types. Much depends on your application, but rest assured – life with Li-ion is far less hassle than lead.

Over the last 8 years on my sailing yacht I’ve run AGM lead leisure batteries and Lithium-Ion propulsion batteries. Initially it was AGM for propulsion before discovering the effectiveness of Lithium. That journey taught me a lot about loads, capacity, cost and battery life – it’s one of the reasons why I think we’ve reached a tipping point and why these new SuperPack batteries may just be the ticket for your next project or battery replacement.

If in the first instance you are unfamiliar with AGM vs Lithium, then here’s a blog that explains that.

When to use a SuperPack?

Every battery size and type has it’s own particular use. For instance you may use the Lithium battery 12,8V & 25,6V Smart and the Lithium battery 24V (LiFePO4 & NMC chemistries) ranges (all of which have an external BMS) in quite different applications to the new SuperPack range. So, where to use the SuperPacks?

When it comes to replacing lead acid type batteries such as AGM and Gel in many applications, the SuperPack range can be considered the next generation after lead – making it far easier to replace lead with lithium. The only caveats being replacement is down to certain parameters being met, namely – Capacity (Ah), Voltages (12.8V & 25.6V), Discharge and Charge currents (C rates). Do in that case be sure that your chosen replacement fits your criteria by checking the datasheet and be aware the SuperPacks can be connected in parallel, but not in series. Hence in that case you would consider the other Victron lithium products named above.

The Lithium SuperPack

Victron Energy’s recently introduced Lithium SuperPack range comes in the following capacities and voltages:

12.8V & 25.6V Lithium SuperPack batteries:

  • 12.8V – 20Ah
  • 12.8V – 60Ah
  • 12.8V – 100Ah
  • 12.8V – 200Ah
  • 25.6V – 50Ah

These SuperPacks will give you 2,500 cycles to 80% depth of discharge at 25°C, much more than lead.

Comparison: SuperPack 60Ah LiFePO4 vs 90Ah AGM

Let’s compare the 60Ah Li-ion to say a typical 90Ah AGM battery discharged to the commonly accepted economic cycle life of 50% discharge for lead. That would give us 600 cycles at that DOD for the AGM compared to 2,500 at the even deeper discharge of 80% for the LiFePO4. Already you can see you may need to replace your lead-acid type battery 2 to 4 times as often as the Lithium. Of course loads, operating conditions and calendar life have to be factored in too. Regardless you get the idea – Lithium does more and lasts longer.

The benefits of Lithium don’t stop there though. Whilst LiFePO4 chemistry is considered the safest of them all, it’s worth considering other factors too to decide whether the reduced weight and volume of say NMC is of more importance for your application than LiFePO4 for example. Victron Energy do both types. These star graphs do a good job of explaining the differences: https://batteryuniversity.com/learn/article/types_of_lithium_ion

60Ah SuperPack

90Ah AGM

Weight
9.5kg 27kg
Size (mm)
229 x 138 x 213 350 x 167 x 183
Useable energy @ 25°C
614Wh 540Wh
Cycle life
2,500 cycles 600 cycles
Cost
x 2.5 (approx)  x 1

Notes for the table above:

  • Useable energy and cycle life are based on 80% depth of discharge for Li-ion and 50% for AGM, these being considered the most economic use of those battery types.
  • Higher loads with lead will further reduce available Wh (Peukert’s Law) when compared to Li-ion.
  • Capacity is also reduced for both types by temperatures below their 25°C temperature rating (see their respective datasheets)

Make what you will of the above and whilst you are pondering the pros and cons don’t forget to take these additional factors into account for the comparison above.

  • Shipping: If you are replacing your lead from 2 to 4 times as often as Li-on and the fact that the lead weighs around 3 to 4 times as much (depends on Li-ion chemistry used) – then do consider the extra shipping costs.
  • Voltage stability: The voltage profile is far flatter for Li-ion compared to lead.
  • Voltage sag: Subject to the load, voltage sag with lead is significant compared to Li-ion.
  • Li-ion has much faster charge times and if charging from a generator it saves on generator runtime.

Other factors to consider

Is the above enough to convince you of why Lithium might be a better alternative than AGM or indeed Gel? Personally I’m sold on Lithium, but if you are not here’s a few things further to consider:

  1. A lead-acid battery will fail prematurely due to sulfation if it operates in deficit mode for long periods of time (i.e. if the battery is rarely, or never at all, fully charged). It will also fail early if left partially charged or worse, fully discharged.
  2. By comparison a Lithium-Ion battery does not need to be fully charged. This is a major advantage of Li-ion compared to lead-acid which needs to be fully charged often to prevent sulfation.

  1. Efficiency. In several applications (especially off-grid solar), energy efficiency can be of crucial importance. The round-trip energy efficiency (discharge from 100% to 0% and back to 100% charged) of the average lead-acid battery is 80%.
  2. The round-trip energy efficiency of a Li-ion battery is 92%.

  1. The charge process of lead-acid batteries becomes particularly inefficient when the 80% state of charge has been reached, resulting in efficiencies of 50% or even less in solar systems where several days of reserve energy are required (battery operating in 70% to 100% charged state).
  2. In contrast, a Li-ion battery will still achieve 90% efficiency even under shallow discharge conditions.

Make the switch?

Are you ready to make the switch from Lead to LiFe? If you’ve considered all the above I suspect you might be. And if you need more useable Ah why not run the sums on say a 100Ah Lithium SuperPack vs 220Ah AGM using the process I have above. Or indeed a 200Ah Li-ion SuperPack vs your choice of lead.Lithium SuperPack batteries – an all in one solution

Don’t forget too that Lithium has little or no Peukert effect when compared to Lead types. This is especially important when considering loads with lead-acid higher than 0.05C (Battery Ah divided by 20 or Ah multiplied by 0.05). In other words for a 100Ah AGM with a Peukert of say 1.15 or more and discharging at 0.25C (25 Amps in this case – which is 5 times the 20 hour rate) there will be significant reduction in capacity – as there will be at colder temperatures too. Li-ion has a Peukert of around 1.05 when compared to lead of around 1.15 to 1.25.

So – if you were discharging that 100Ah lead at 5 Amps (the 20 hour discharge rate at a temperature of 25 degrees centigrade) then the full capacity of 100Ah is still availaable and it’s not shrunk due to Peukert. But now if it were 0.25C, it’ll be around 80% of that original 100Ah capacity – or less, subject to load type and duration.Lithium SuperPack batteries – an all in one solution

The bottom line is you no longer have the Ah you purchased, whereas with Lithium there is little to no effect, helped by a lower Peukert and good voltage stability. That is especially important with constant inverter loads – a place where lithium shines. If you want to learn more about Peukert and run a spreadsheet to see such effects, then I have found this link most helpful.

Finally and one I’m always grateful of is vastly reduced charge times, no more waiting for hours of lead absorption charging to get from 80% to 100% SOC. Conversely Li-ion flies up to around 98% SOC in bulk with those last few percent in absorption to fully balance the cells – and unlike lead you don’t always have to fully charge to 100% as often. Note that your 12V charging system needs to accommodate 14.2V – 14.4V ‘absorption’ and ‘13.5V’ float. If charging from an alternator also note the maximum continuous charge currents for the 12.8V range, by checking the datasheet.

Downsides

Not wanting to sound too evangelical, we also need to consider the few downsides of Li-ion.

  • Higher upfront cost and to some extent higher capital risk.
  • Charging is restricted to the +5°C to +45° range, subject to an internal means of blocking the charge source when the temperature is below +5°C. Note this is currently automatically possible with Victron MPPTs when used in conjunction with the Smart Battery Sense for instance. Other products are being worked on to achieve this too and documentation to that effect will be updated in due course.
  • The SuperPack (unlike other Victron Lithiums) is not designed for series connections.
  • The peak and maximum continuous discharge current of the SuperPack range is not as much as some of our Lithium batteries as its related to the BMS and the disconnect being internal to the battery – so do check the datasheet to make sure the current peak and discharge ratings suit your needs – or choose from the Lithium battery 12.8V & 25.6V Smart or the Lithium battery 24V range or build a parallel SuperPack bank.Lithium SuperPack batteries – an all in one solution

Conclusion

Whatever your decision when purchasing new batteries, maybe it is time to give the Lithium SuperPack batteries a chance. There’s LiFe after Lead you know – but as I’ve shown that all depends on what you want to achieve. Is it less weight, less volume, maybe it’s capacity or voltage or any of the multitude of factors that go into choosing a battery system.Lithium SuperPack batteries – an all in one solution

Whatever you choose Victron have plenty of choice – with a large range of battery types and sizes: https://www.victronenergy.com/batteries

John Rushworth


The conversation was getting heated and it ended with the statement “Diesel Generators are cheaper than the Electricity Company of Ghana (E.C.G) and some businesses in Ghana run on generator power even when the grid is available”……………………..

This was what I learnt from a conversation I had in 2014 with an associate of mine who ran a medical practice in East Legon at the time.I was actually doubtful of his claims because of his political affiliation and therefore brushed these claims aside.

Whilst Ghana appears to have recovered, somewhat, from the power crisis, many businesses are, ironically, turning to generators which they find to be cheaper than the national grid. Fast forward to 2017 ,whilst running several power audits across Ghana ,I  come across several businesses who run on diesel generator power 2-3 times weekly as a cost cutting strategy for electricity. Some of these business claim to be able to save up to 25% on power costs by this strategy alone.

With Ghana’s prepaid metering system, it’s easy to compare how much is spent on either generators or the national grid on weekly or even daily basis .The bare facts are that  that solar  has gotten cheaper today than it was years ago and with an average 5.5 hours of effective sunshine daily in Ghana, businesses  should seriously consider quality Grid-tied solar power systems such as Fronius .With these solar power systems you don’t need to even worry about rising utility tariffs  or fuel prices.

Most Ghana based business shy away from Solar power because of the perceived high initial costs. Grid-tied solar often has fewer upfront costs than an off-grid system. For one, it can cost less to install a grid-tied system because it does not require batteries, as off-grid does. For another, it’s more flexible, as you don’t necessarily have to install the number of panels you will need to produce all your energy needs right away. people choose grid-tied solar power  systems when they know they could only afford a certain number of panels at a given time, so their goal is to lower their electricity bills—but not eliminate them entirely just yet.

A fully installed 20Kw Fronius Grid-tied solar inverter in Accra-Ghana

Over time, you can always add more panels as you find the financial resources to do so.This solar power option is excellent  for  commercial operations that have a high power demand during daytime hours.Up to 65% percent of power demand for most offices in Ghana is for air-conditioning /cooling due to high daytime temperatures  and humidity.  Our research indicates that grid tied solar can be at least 45% cheaper than off grid solar power systems and you can save Ghc 24,000 per annum by the deployment of just 10kwp.We are able to calculate the savings because of the inbuilt monitoring systems in these intelligent devices built by Fronius BV of Austria.

Nocheski Solar is dedicated to using products  that have a strong, unrivalled reputation for technical innovation, reliability, and build quality. Our products are widely considered to be the professional choice for independent electric power.You may call +233244270092  email for further information


Salima Visram is the 23-year-old entrepreneur behind the Soular, a backpack company equipped with solar panels, which allow children who don’t have access to electricity in rural parts of Africa to study at night without having to use an expensive and carcinogenic kerosene lamp. Soular will be launching a new one-for-one model today, through the sale of trendy backpacks on HSN in collaboration with Disney, alongside their new movie, Queen of Katwe, which is set in rural Uganda, where the kerosene lamp is central to the plot of the story.

“I was inspired to launch Soular after seeing how some children in Kenya, where I grew up, were not able to study every day and get into secondary school, which perpetuated the vicious cycle of poverty,” Visram said.

these school children seem very excited about their solular backpacks

these school children seem very excited about their solular backpacks

Oscar winner Lupita Nyong’o, who stars in Disney’s Queen of Katwe, is a supporter of Soular Backpack. Nyong’o and Disney went with the Soular team to Katwe in Uganda to distribute backpacks there in July.  Soular will also be showcased at the premiere of the movie in Hollywood later this September.

“On every Soular Backpack, there’s a quote from Lupita that reads, ‘The Power Is In Your Step,’” Visram said. watch the video here

Visram launched Soular by starting a crowdfunding campaign, which exceeded its goal by 25% raising $50,000. Soular has since distributed hundreds of backpacks across Kenya, Uganda and Tanzania.

“So far, we’ve distributed backpacks to 500 children but we’ve realized that with one backpack in the family, on average 3 children are able to study with it,” Visram said.

Soular’s new one-for-one backpack

Soular’s new one-for-one backpack

Visram has big plans for Soular.

“The next phase of Soular would be to scale the one-for-one model across North America in a big way and make sure that everyone who needs a backpack is aware that they could buy a backpack that gifts light to a child in need,” Visram said. “We’re excited to position ourselves as a leading backpack company that stands to create social impact.”

Soul’s new one-for-one backpack is for sale on HSN for $49.95 in two colors, navy and white

Visram stays committed to making Soular a company that finds sustainable solutions to poverty.

Salima Visram, founder of Soular, with the new backpack for sale on HSN

Salima Visram, founder of Soular, with the new backpack for sale on HSN

“My vision for Soular is to make a holistic system of interventions and services that give people the tool to alleviate themselves from poverty,” Visram said. “We want to partner with a bank, so that the money saved on kerosene every month goes into a secondary education fund for the child. We want to set up micro-franchises in rural villages to sell lamps and batteries, in order to generate employment. We’ve just moved production to Kenya, which is creating more employment and impact within the region. Realizing how electricity is at the center of education, health and economic development is also something that inspired me to start it.”