Official opening: VICTRON-Competence Centre, Klagenfurt

A little over a year ago Victron Energy in association with Austrian Victron Energy dealer E-BOX Off-Grid Power Systems, together with HTL1 Lastenstraße and their headmaster Dr. Michael Archer forged a partnership to utilise Victron Energy products for their varied educational program – to build a ‘Competence Centre’.

As a result on Thursday, 5th December 2018, the new VICTRON-Kompetenzzentrum (VICTRON-Competence Centre) for ‘Renewable Energy and Storage Technology’ was opened at the school.

HTL1 Lastenstraße is a Higher Technical Institute in Klagenfurt, southern Austria, with around 1100 students and 120 teachers. The school trains engineers in the fields of mechanical engineering, electrical engineering and mechatronics. It has around 34 workshops and laboratories as well as several competence centres. Another focus is ‘Land und Umwelttechnik’ (agricultural engineering and environmental technology).

This all makes HTL1 a unique training centre, not only for students from Carinthia but southern, eastern and western Austria. With the new VICTRON-Competence Centre training courses will specialise in the fields of energy storage technology, photovoltaics and energy management. Besides these courses Victron Energy have also been welcomed to run their own special courses at the school. In addition, interested companies will also have the opportunity to use this modern infrastructure for their own education and training events.

HTL1 Lastenstraße – The school is equipped with many different, modern photovoltaic-systems.

The school were particularly pleased to receive a visit from Victron Energy sales manager Leo Yntema  for the opening. Here’s a brief video (in German) of that visit and a few photos from the opening event.

https://youtu.be/r9wasVuZIUU

From left to right: Manfred Hartner – Managing Director of  E-BOX Off-Grid Power Systems, Dr. Michael Archer – Principal of HTL1 Lastenstraße and Leo Yntema of Victron Energy.

A student explains one of the 5 Workstations and its components at the opening.

From left to right: Andreas Albel, the teacher who is responsible for the VICTRON-Kompetenzzentrum and Leo Yntema of Victron Energy.

Equipment utilised

There are 5 workstations utilising Victron Energy equipment. Each workstation is equipped with its own separate 3kWp photovoltaic-system, plus each of the panels can be switched on and off separately.

Workstation 1: components / power storage / 3-phase
  • 3 x MultiPlus 48/3000/35-16
  • 1 x Color Control GX
  • 1 x Battery Monitor BMV-700
  • 4 x LiFePO4 battery 12.8V/90Ah – BMS
  • 1 x Battery Management System VE.Bus
Workstation 2: components / power storage / 1-phase
  • 1 x MultiPlus 48/3000/35-16
  • 1 x Color Control GX
  • 1 x Wall mount enclosure for Color Control GX
  • 1 x Battery Monitor BMV-700
Workstation 3: components / power storage / 1-phase
  • 1 x ECOmulti 24/3000/70-50 2,3 kWh LiFePO4
  • 2 x LiFePO4 battery 12.8V/90Ah – BMS
Workstation 4: Components / power storage / DC coupled
  • 1 x BlueSolar MPPT 150/85 CAN-bus
  • 1 x Wall mount enclosure for Color Control GX
  • 1 x Battery Monitor BMV-700
  • 1 x Venus GX
  • 24 x OPzV 200 Batteries
Workstation 5: Components / power storage / DC coupled
  • 1 x EasySolar 48/3000/35 MPPT 150/70 with Color Control GX built-in
  • 24 x OPzV 200 Batteries

Conclusion

It’s great to see the new VICTRON-Competence Centre now open and we trust it will serve as a valuable resource for the school and the young engineers of tomorrow.

This artcle was orriginally published on the victron blog by John Rushworth on January 31st, 2019

Links

Interview with Dr. Archer – https://www.victronenergy.com/blog/2017/11/13/back-to-school-with-victron-energy/

HTL1 Lastenstraße Klagenfurt Website – http://htl1-klagenfurt.at/index.php/en/

HTL1 Lastenstraße Klagenfurt on Facebook – https://www.facebook.com/HTL1.Klagenfurt/

E-BOX Off-Grid Power Systems Website – http://www.e-box.co.at


Siemens partners WestPark for industrial park in Takoradi

Siemens has announced it has signed a Memorandum of Understanding (MOU) with WestPark Enterprises to develop an expandable microgrid solution for the fast-growing industrial and business park based in Takoradi, Western Ghana.

The Westpark aims to eliminate many of the challenges faced by companies doing business in Sub-Sahara Africa, such as access to reliable power, water, broadband internet and transport.

 The new industrial park is poised to accelerate the transformation of Takoradi – Ghana’s third-largest city.To lay the foundations for reliable, competitive and efficient energy, WestPark has entered into a partnership with Siemens.

As part of the agreement, Siemens will develop a 250kW microgrid that controls the energy generation for the initial phase of buildings to be constructed at WestPark.

Siemens will design the microgrid so that the first phase of WestPark can be powered entirely by renewable energy and therefore provide a sustainable and cost-effective solution for tenants.

On-site photovoltaic panels will power the microgrid and a back-up battery storage solution will be sourced as well.

The grid can be expanded as more buildings are added with the aim of ensuring that the park remains powered by renewable energy.

According to Sabine Dall’Omo, CEO of Siemens Southern and Eastern Africa, “This project is perfectly in line with Siemens’ vision for future business in Ghana and other African countries. As a company, we are continuously looking for new responsible and efficient energy and infrastructure solutions, and our collaboration with WestPark is a good example of how we can support partners with similar goals.”

Siemens is specifically committed to economic growth across Africa, and in doing so in a forward-thinking manner by implementing environmentally sustainable solutions that will help its partners and customers succeed in today’s environmentally-conscious global market.

Siemens AG is a German conglomerate company headquartered in Berlin and Munich and the largest industrial manufacturing company in Europe with branch offices abroad. The principal divisions of the company are Industry, Energy, Healthcare, and Infrastructure & Cities, which represent the main activities of the company.


We’ve just added two Bluetooth enabled Inverters to our range. The new-build Victron Energy Phoenix Inverter Smart models are rated at 1600VA and 2000VA and we have models for 12V, 24V and 48V systems.

  • Dynamic cut-off/intelligent restart
  • We’ve added  48V models to the range
  • Bluetooth communication – allows easy set-up and monitoring on your phone, laptop or smart device
  • Slimline design allows for discreet wall-mounting
  • Eco mode

Bluetooth …and VE.Direct

Bluetooth has been built in to the Victron Energy Phoenix Inverter Smart – allowing your power consumption to be monitored, or the settings changed, straight from your phone, tablet or laptop via our VictronConnectapp – which is free to use. Victron Energy Phoenix Inverter Smart also has a VE.Direct communication port allowing wired connection to a tablet or laptop via an optional VE.Direct to USB cable. The unit can then be set-up and programmed using VE Configure software.

Built in Bluetooth allows you to view live data on your mobile phone, laptop or smart device via our VictronConnect app – which is free to use.

Dynamic Cut-off

Your battery is protected by a user-defined low voltage alarm.

The alarm will be followed by an automatic cut-off – the value of which is Dynamic: For example, if the inverter is providing a lot of power at the time a low-voltage condition is detected, the unit will perform its disconnect at a lower battery-voltage than if it were providing only a modest amount of power. When only a modest amount of power is being drawn, cut-off will take place immediately a low-voltage condition exists. See the Manual for full details.

Intelligent re-start

A cut-off will be followed by three intelligent restart attempts. If the cut-off was triggered by a sudden but temporary drop in voltage, the load will be reconnected. A thirty-second delay ensures that the increase in voltage which has been detected is enduring.

ECO mode

In ECO mode some Victron Energy Phoenix Inverter Smart units consume just 0.6 watts – so they can be left in ‘standby’ for extended periods without worrying about the battery running down between jobs. ECO mode is intelligent, too: When the power being provided by the device falls below a certain value – it will automatically enter standby mode. As soon as it detects a load above a preset ‘snooze’ limit, the unit will remain on, to power this new demand.

LED diagnostics

Similarly to its predecessors, the Phoenix Inverter Smart is equipped with ‘traffic-light’ LED’s – the behaviour of which relate to the Inverter’s current ‘status’ – providing you with information concerning which mode the unit is in, whether any alarm conditions exist, or if an automatic trip has taken place. In depth information can be found in the manual. Bluetooth connection to your smart device provides deeper analysis.

The Victron Energy Phoenix Inverter Smart – which weighs around 12kg – can be tidily installed in an out-of-the-way location, thanks to its slim profile, and sturdy mounting plate. But if it’s tucked away – what about reaching it …to turn it on and off? No problem – a remote on/off switch is available.

 

Summary

True Sine Wave power output can be used for sensitive electronics such as computers; and it’s Peak Power capability – of around twice its ‘continuous’ rating – will supply the inrush current typically drawn by workshop tools such as drills, jig-saws, sanders and LED lamps. It can continuously power all the comforts of home – such as Microwave cookers, vacuum cleaners – even pressure washers.

Phoenix Inverter Smart continues to use ultra-reliable ‘full bridge’ configuration and toroidal transformer topology – all housed in a stainless steel case – to provide years of worry-free service.

Phoenix Inverter Smart is a protected against short-circuit, and overheating.

Inverters for every requirement

We have  Inverters, and Inverter/Chargers for every possible requirement – from compact 175W models to 144kW – configurable for 3-Phase; Multi source AC; and even for Assisting Grid-Power. In Ghana call +2332442700092  or visit our facebook page  to find the right Inverter for you.


Lead acid battery charging in cold weather

This blog covers lead acid battery charging at low temperatures. A later blog will deal with lithium batteries.

Charging lead acid batteries in cold (and indeed hot) weather needs special consideration, primarily due to the fact a higher charge voltage is required at low temperatures and a lower voltage at high temperatures.

Charging therefore needs to be ‘temperature compensated’ to improve battery care and this is required when the temperature of the battery is expected to be less than 10°C / 50°F or more than 30°C / 85°F. The centre point for temperature compensation is 25°C / 77°F.

Cold weather also reduces a battery’s capacity. This is another factor that needs to be taken into consideration, along with the load and charge rate compared to the battery capacity (Ah). Both of these factors affect the correct and consequent sizing of a battery for your particular application.

Battery capacity in Ah is usually quoted as a 20 hour capacity rating at 25°C. The discharge rate or load can be written as 0.05C where for example C is the load factor of the 20 hour rated battery capacity at 25°C.

Worked examples: If a 100Ah 20hr rated battery then a 0.05 load would be 100 x 0.05 = 5 Amps or 100/20 which is also a 5 Amp discharge rate over that 20 hour period. A 10A load on a 100Ah 20 hour rated battery would therefore be a 0.1C discharge rate, a 0.2C discharge rate on a 200Ah would be 40A and so on. C ratings also relate to charge rates as well as discharge rates.

When buying a battery you may see its Ah quoted at 20 (the standard rate), 10 and 5 hour rates so you can see how load ‘shrinks’ the Ah. Some even quote at 25 hour rates, which often fools people into thinking they are getting a bigger battery than standard.

To recap – capacity reduces at low temperatures, as it does for higher discharge C rates above the 0.05C 20 hour rate. This reduction in capacity due to higher discharge rates is due to Peukert’s Law.

Graph showing the effect on battery capacity due to temperature and load:

Lead acid battery differences

Lead acid batteries come in a variety of types:
  • Wet lead with the ability to top up each of the six cells with de-mineralised water.
  • The so called ‘sealed’ wet lead leisure or rather maintenance free battery. These cannot be topped up and often have a green go or red no go cell inspection indicator.
  • AGM (Absorbent Glass Mat) valve-regulated lead-acid (VRLA), where the electrolyte is absorbed in a glass mat.
  • Similar to the AGM, but the electrolyte is held in a Gel.

All of the above are however lead based (as opposed to lithium) technology. Besides lithium batteries Victron Energy sell VRLA AGM and Gel monoblocs (6 x 2V cells in series) due to their superiority over wet lead monobloc types. Victron’s range consists of:

  • Gel (Better cycle life than AGM).
  • AGM (Better than Gel for higher loads and well suited for use with inverters).
  • AGM Telecom. Designed primarily for Telecom applications, but also excellent ‘footprint space savers’ for marine and vehicle applications.
  • AGM Super Cycle (Best if frequent discharge to 60-80% DOD is expected).
  • Lead Carbon Battery (Improved partial state-of-charge performance, more cycles, and higher efficiency).

Additionally Victron also sell specialist lead acid type batteries.

  • OPzV 2V individual battery cells. Long life, high capacity gel.
  • OPzS 2V individual battery cells. Long life high capacity flooded tubular plate batteries for specialist solar applications.

Temperature compensation and charging

Now we know about the kind of batteries, capacities and loads we are dealing with, we need to put some numbers together for temperature compensation and charging.

The recommended temperature compensation for Victron VRLA batteries is – 4 mV / Cell (-24 mV /°C for a 12V battery).

Besides accounting for cold weather charging the charge current should preferably not exceed 0.2C (20A for a 100Ah battery) as the temperature of the battery would tend to increase by more than 10°C if the charge current exceeded 0.2C. Therefore temperature compensation is also required if the charge current exceeds 0.2C.

How to achieve temperature and voltage compensated charging

There are a range of Victron products to achieve this.

With our range of inverter/chargers and since VE.Bus firmware version 415 was released some time back this has ensured that:

– Temp compensation continues down to -20C

– This is for all voltage set-points, except for float, storage and the start of bulk charging

– As soon as the temperature goes below -30C, the compensation mechanism is disabled (normal charge voltages are applied) and a warning is shown.

For systems that don’t use an inverter/charger – we can use Smart Battery Sense to ensure that charging sources provide optimal voltage and temperature compensated charging to your batteries, by wirelessly transmitting accurate battery voltage and temperature values to your Solar Charge Controller or Smart battery charger.

This information is then used to set the ideal charging parameters, resulting in more complete, faster charging – improving battery health and therefore extending battery life.

The Victron Toolkit app allows you to calculate cable sizes and voltage drop. Here’s an example where cable length is the round trip of the positive and negative battery charging cables. This is so you get an idea of what Smart Battery Sense automatically takes into account to ensure the correct charge voltage goes into the battery, by ensuring the charge voltage is compensated for and corrected due to any cable losses.

Victron’s range of SmartSolar MPPT Charge Controllers all work with the Smart Battery Sense. In fact I’ve just fitted one to my motorhome, along with the required Smart Battery Sense, due to the fact the leisure battery temperature location when compared to the location of the controller can have a difference of up to ten degrees. Definitely a case for ensuring accurate temperature compensation.

Other products can be connected too by using what we call ‘VE.Smart Networking support’. See the VE.Smart Networking page.

Conclusion

With the above solutions I know I’ll be happier now that my batteries are getting exactly the right charge due to optimal temperature and voltage compensation.

Why not make sure you are doing the same…

John Rushworth


Ghana Hopes Lithium Load Will Lure Automakers plus drive solar

Ghana might become the world’s next hot spot for lithium, after large quantities of the element and other base metals have been identified in the Ashanti and Central regions, the Ghana Minerals Commission said.

While it’s too early to confirm the presence of commercial quantities, Ghana officials hope this discovery will capture the attention of Tesla and other electric car manufacturers that use lithium-ion batteries, such as Nissan Motor Co. Ltd., General Motors Co., and Ford Motor Co.

“The country can play a leading role in the electronic car business if the mineral is discovered in commercial quantity,” said Chief Executive of the Minerals Commission Kwaku Addai Antwi-Boasiako.

John Peter Amewu, minister for lands and natural resources, recently led a nine-member Ghanaian delegation to attract investors to the mining sector as part of the 2018 Mining Indaba Conference last month in South Africa.

Bloomberg Law

Since early mining days, gold has been the focus of mining in Ghana, particularly in the Ashanti region. The world’s second-largest producer of gold after South Africa is Ghana, where diamonds and base metals such as manganese ore, iron, and bauxite are mined as well.

While local news reported that lithium is a new discovery in the Volta region, Isaac Abraham, acting head of communications for the Ghana Minerals Commission, told Bloomberg Environment March 20 that investigations still need to be done there. Only the Ashanti and Central regions of Ghana that have confirmed the occurrence of lithium, he said.

The element “has existed for some time,” Abraham said, as the Egyasimanku Hill lithium resource was defined by the Ghana Geological Survey in 1962 but remained unnoticed for years.

Commercial product won’t come for years, according to Christopher Perrella, chemicals analyst at Bloomberg Intelligence.

“It will be a number of years until you see commercial product. It may be a decade before you see commercial extraction,” he said. “Extraction and processing it chemically so that battery makers would use it is a significant investment in green fields. It must then must meet quality standards. This takes capital and industrial know-how.”

Ghana does have a location advantage. “You can get it out in ocean and into global market, but it depends on global demand in 10 years and that’s so far out,” Perrella adds.

Valuable Lithium

The lightest metal on the periodic table, lithium has a unique chemical profile and is often alloyed with aluminum, copper, manganese, and cadmium to make high-performance alloys for aircraft. A derivative, lithium hydroxide, is used to absorb carbon dioxide in space vehicles. Lithium compounds also are used as mood-stabilizing drugs.

Lithium batteries are common in a variety of consumer devices—from laptops, mobile phones to golf carts and electronic cigarettes—and has industrial applications as well, including heat-resistant glass and ceramics, lubricating greases, and fusion fuel in staged thermonuclear weapons.

The lithium industry is projected to grow over the next five years, according to a 2017 report from consultancy IbisWorld.

This growth and the rising green movement will fuel demand for electric vehicles and energy storage systems that use lithium-ion batteries. Overall, revenue is projected to grow at an annualized rate of 1.4 percent over the five years to $965 million, according to IbisWorld.

The element is also part of rechargeable batteries in electric cars and aluminum-lithium for spacecraft. Neither Tesla Inc. nor SpaceX responded to Bloomberg Environment’s request for comment.

IronRidge Agreements

IronRidge Resources Ltd. last year said it identified “multiple, significant outcroppings of lithium in Ghana.” Its mining operations now map and sample the region.

The Australian company, through a joint venture with Ghanaian companies Obotan Minerals Ltd. and Merlink Resources Ltd., now holds the rights to acquire historic Egyasimanku Hill, which surveys indicate has a potential deposit of 1.48 million tons.

“IronRidge has the Central Region,” Abraham told Bloomberg. “There is also lithium in part of the Ashanti Region, but no one has done any work on that area as of now.”

The company recently expanded its lithium interests in Ghana, including an agreement with Ghanaian company Joy Transporters that provides IronRidge with exclusive rights to an exploration license in the Central Region town of Saltpond and lithium project in Cape Coast.

IronRidge also has exclusive rights to a prospective lithium license portfolio covering 1,177 square kilometers (454 square miles) in neighboring Cote d’Ivoire.

“Enhancing and consolidating the company’s ground position along the Cape Coast lithium project corridor is an integral step in the company’s strategy of building a lithium project pipeline in Ghana,” IronRidge Chief Executive Officer Vincent Mascolo said in a statement.

 

By Diosa B.G. Woods


How solar is changing Ghana’s real estate market ? If you are involved in the business of constructing a new building in Ghana, whether it’s a logistics center, a manufacturing plant or a multi-family residence in East Legon, most likely installing solar panels was mentioned at some point in the process. Solar panels are being integrated into more and more new constructions, and some cities like Tema and Accra are leading the way.

Our research also indicates that there is a high demand for 2-3 bedroom houses and the cost of land and litigation has pushed the direction of real estate developments into apartment complexes rather than single detached or semi detached homes. Rooftop solar is a great investment that can generate hundreds of thousands (if not millions) of dollars and has a return on investment of just 3-5 years. It increases the life of the roof, and the value of the property. Every owner, architect and general contractor should consider how they can integrate solar in their new construction.

This renewable energy revolution is a global one and many new home owners in Ghana are currently considering going green in their next real estate project, .with an average daily effective sunshine hours of 5.5 hours, Ghana is a great place to go solar. There is generally a hunger for renewable energy options even though many do it for  environmental and energy security reasons. Another school of thought indicates that the rising costs of diesel and the effects of pollution are gradually giving diesel generators an “uncool”  or even “savage” tag. How solar is changing Ghana’s real estate market ?

But where do you start? Should you integrate solar into new construction or just wait until later?

No Muss, No Fuss

The first thing to note is that adding solar to a new building doesn’t mean you need to redesign the whole building. In fact, only minor adjustments, if any at all, will be needed. However, there are some things to consider that will make the process of switching to solar easier. By planning ahead and integrating solar during construction, you can tap into efficiencies during construction and save money.

An nocheski installer installing a Victron Energy multiplus compact inverter

For example, you should ensure the structural load of the roof can support a solar PV system. Most roofs can support solar without structural reinforcements, but if your current building design can’t support solar, you want to catch this early on before you begin construction.

Brighten up the Bottom Line

You can also integrate solar into your building design, saving money by making the solar installation process more efficient. A few examples of this include strategic designs that may consider ventilation, insulation and air conditioning units, and integrating the solar system’s electrical wiring and equipment into your building design. This type of planning will lower your overall cost of solar installation whilst adding an energy efficient tag to the project.

Get In and Get Out

The last thing to consider is that installing solar during construction minimizes the disruption to your operations. Once your building is operational, installing solar will have minimal impact on your day-to-day work, but it is always better to complete the installation before people are in the building. That way, you will be producing clean energy and saving money from day one. How solar is changing Ghana’s real estate market?

The Future is Bright

Thousands of companies install solar after the building is complete, but some forward thinking can make your solar installation cheaper and more efficient. The process of transitioning to solar can be daunting. As the CEO of Royal Estates Group, Mr. Stanley Owusu shared regarding the company’s recent transition to solar panels, “I couldn’t make heads or tails of it.” They turned to a Nocheski solar to help them navigate the design process, solar installation.The result is the installation of several Victron multiplus inverters in Oasis estates projects.The evidence is clear that whether you’re a business owner or a commercial real estate developer, solar is an excellent investment opportunity. Integrating solar into a building during construction only gives an added boost to the economics.Real estate stakeholders such as architects, builders and homeowners may contact us on 0244270092 or email [email protected] for inquiries and how they may benefit from expert advice for prospective real estate projects.


Lithium-ion batteries in Renewable energy resources – such as wind, water or solar solutions – hold great promise. They could provide energy while overcoming Africa’s infrastructural challenges. But this energy would still need to be stored. Lithium-ion batteries might provide a solution. The Conversation Africa asked Bernard Jan Bladergroen about the challenges and opportunities.

What are lithium-ion batteries and what are its benefits?

Lithium ion, or Li-ion, batteries are a type of rechargeable battery. They are a popular choice because when well looked after, they can be drained and charged literally thousands of times which makes them superior to commonly used lead acid batteries.

Lithium-ion batteries – like other batteries used to store energy – act as a buffer between power generation and consumption. The batteries are charged when power is available from, example, a wind turbine, solar panels or the grid, and then provide power when it’s not.

If Lithium-ion batteries could be manufactured in Africa, on the appropriate scale, they would become cheaper and power users could rely more on renewable energy than they do now. This would open the path for clean, sustainable energy, mitigating the effects of climate change. It could also boost economies.

Africa already has part of the solution: photovoltaic (PV) panels are common and the energy they produce in South Africa is approximately  40% cheaper than that generated from fossil or nuclear fueled power stations. The main drawback of PV power is that it can only really be generated between 5-7 hours daily (depending on what part of the continent one is located. That’s not when most people need to use it, so it has to be stored cheaply.

Lithium-ion batteries have been commercialized elsewhere in the world. Why not in Africa yet?

Li-ion batteries are used in many commercially available products, like power tools, toys, electric bikes, laptops and mobile phones. Large Li-ion battery packs in home and grid-power applications are becoming rapidly more popular in many countries, including Africa.

There are only a few Li-ion battery factories in the US, Poland, South Korea, Japan and China. Most of the companies that run them work closely with electric vehicle manufacturers and consumer good production sites. Some of the top 10 companies manufacturing the batteries include; Panasonic, Toshiba, Samsung SDI, LG-Chem and Tesla.

There are a few small companies in South Africa who assemble battery packs using imported cells. And, to the best knowledge of the author, there’s only one facility on the African continent that has the capability to produce Li-ion battery cells at pilot scale: the University of the Western Cape’s Energy Storage Innovation Lab. The lab has already been laying the groundwork for industrial Li-ion batteries assembly. Though I cannot say with certainty that Li-ion cells are not being produced elsewhere in Africa, it would be hard for a commercial plant to go unnoticed as it would have to be very large to be profitable.

freedom won lithium-ion battery installed in Accra

There is huge opportunity. South Africa has almost 80% of the world’s known reserves of manganese – an important component of the most popular battery. Because the companies that produce Li-on batteries have deep pockets, and because the price of manganese is relatively low, they have been able to import it from South Africa.

A growing market will eventually justify the creation of a local battery production plant. But to produce batteries at a competitive price, a large scale facility with an investment of at least $1 billion is required. Only in a facility that produced millions of excellent quality cells per day would the cost per cell be able to compete with cells produced on other continents. It will be challenging to raise the required capital in Africa.

What would be the major challenges in commercializing Li-ion across the continent?

To achieve commercialization across the continent, the cost of a Li-ion battery system needs to be lower than any alternative energy storage system. Currently, Li-ion batteries cost between $500-$1000/kWh, significantly more than Lead Acid batteries, but since they last much longer than Lead Acid, they can offer a better deal.

The desired shift away from our unsustainable fossil-fuel-based economy can be realized when we produce Li-ion batteries that last many years and cost as little as $300/kWh. Economy of scale is crucial to achieve these costs.

The electrification gains could be huge. Renewable energy – such as wind or solar solutions – combined with an energy storage device that could deliver electricity at the cost of electricity from a power station would be a game changer. And because Africa’s power distribution network is still underdeveloped, investors in the device could see returns sooner than in regions with a fully developed transmission network that’s already paid for.


Why do solar street lights fail in Ghana ?Why are our streets so dark? Why are we not seeing working solar street lights in our streets today?

The answer is simple: some stand-alone solar street lights cause more problems than they solve. In some cases they don’t solve any problems at all.In Ghana a lot of streetlights are installed during  the election year ,streets are kept lit constantly and then all of a sudden the lights go out and never come on again.In recent times regular streetlights have been replaced with stand alone solar streetlights and some of them are quite fancy.

Smart Solar Street Light installation in Antigua and Barbuda

The real question is still whether this technology is economically feasible right now or whether we should wait for technology to evolve further before we take the inevitable plunge.The question of feasibility has reared its head due to bad decisions on the implementation of inadequate solar
components combined with “quick fix” solutions versus sustainable, long-term solutions.
The solar street light is a prime example of this. How many solar street lights have you seen that are not in working order? If you haven’t seen any solar street lights at all, it may be that the local municipality has not been convinced of the feasibility of these systems because so many systems have failed to date.
The solar street light is mostly sold as an LED street light with a battery box and a solar panel mounted on top of a 6 – 9 m pole. This is known as a “stand-alone” solar street light. The theory is that the solar panel will charge the battery during the day and, at night, the light will use the power stored in the battery to provide light.This idea should be considered a match made in heaven and a solution to many problems: streets lights use a lot of electricity and eliminating even only half of this consumption would lighten the strain burden on the grid. LED has a much longer life expectancy, so maintenance costs on the lights should
be minimal. So why do we not see this exciting development in our streets today? The answer lies with a combination of quality and longevity and with an understanding of the products.

Victron Energy’s highly efficient, ultra fast MPPT Solar Charge Controllers provide more efficiency in solar street lighting

The lighting units use quality components. The solar panels are 24% efficient (about as good as you can get commercially) and the LED lights are among the best at 160 lumens per watt (lm/W). The more lm/W a lamp produces the more efficient it is.A traditional incandescent light is around 15 lm/W, an energy-saving fluorescent bulb is around 60 lm/W. Easy then to see the attraction of solar power for free and lamps that are over 10 times as efficient as old fashioned bulbs – all which nicely meets companies requirements for improvements in sustainability and efficiency.

EnGoPlanet Inc ,a New York based company chose to use Victron Energy’s highly efficient, ultra fast MPPT Solar Charge Controllers, plus Victron batteries together with lighting options such as:

  • Wireless internet connection for remote control and management.
  • Smart Cameras.
  • Sensors for collecting various environmental data.
  • Mobile phone charging stations.

Their Smart Solar Street Lights are used in the Kuwait project, where 140 units have been installed. Petar Mirovic, CEO of EnGoPlanet tells me that the success of the project has interested other oil companies too, such as Saudi Aramco who are considering an installation of over 1,000 units in the coming months.

Well – that all sounds to me like a recipe for success!


Total Ghana Limited on Friday, commissioned its first solar-powered service station in the country with a 35-kilowatt capacity, at the Tema main harbour.This expected to save the company at $1000 per moth in electricity bills

The solar-powered station has a total of 225m2 solar panels comprising of 165m2 on the station’s shop and restaurant building, and 60 m2 on the pump island canopy.

Mr Eric Fanchini, Managing Director, said the energy architecture comprises of the solar panels, inverters, batteries, genset and the grid.

Mr Fanchini stated that it was his outfit’s goal to solarize at least 50 per cent of their network of 250 service stations within five years.

He indicated that the solar installation was in accordance with the company’s ambition of being the ‘responsible energy major’ as solar was now part of the modernization plan of Total Petroleum Ghana.

Dr Mohammed Amin Adam, Deputy Minister of Energy, commended management of Total for taking advantage of the abundant renewable energy opportunities in the country.

Dr Adam announced that the Ministry of Energy had commenced the implementation of the scaling-up Renewable Energy Program (SREP) with the objective of delivering over 55 mini-grids, 38,000 stanalone solar home systems and 15,000 net-metered solar-with-storage systems for homes and small-medium enterprise across the country.

Dr Adam added that the Ministry was accelerating the process of promoting the use of solar in public buildings and facilities to reduce their reliance on the national grid as well as improve the financial health of the utility companies.

“We are currently procuring 65k Wp solar to meet about 35-40 per cent of the Ministry’s total load and this would be extended to cover the other state institutions”.

Mr Kojo Jackson, Director, Human Resource and Administration, National Petroleum Authority (NPA) congratulated Total for being the first petroleum company to commission a solar service station in Ghana and urged them to maintain the high standards in their operations.

Mr Jackson expressed concern about the illegal fuel activities undertaken by some unscrupulous persons noting that the NPA was collaborating with the security agencies to deal ruthlessly with any person found culpable in the act.

He added that any licensed petroleum service provider found to be engaging in any illegality would have its operating license suspended or permanently revoked.

Source: GNA


If you are a state broadcaster, Fiji is a difficult region.It takes Victron Energy to power Digital TV in Fiji

900,000 Fijians live on 110 of the nation’s 330 islands …which are sprinkled over a huge area of the Pacific Ocean. Staying in touch with island news, or enjoying the region’s entertainment programmes, has always been challenging – often marred by weak signals and power outages. That’s all changed. Fiji now has ultra-modern Digital TV available to 97% of the population. How has this been achieved?

Fiji is well organised and has one of the best-developed economies of the Pacific region, based mainly on tourism and sugar. Yet the Fiji Broadcasting Corporation struggled to provide a reliable service owing to the mountainous topography, and difficulties of getting power to offshore repeater stations using fragile infrastructure, dogged by extreme weather events.

Derek-Gaeth-Hitech-COO-digital solar powered container installation complete.

New Zealand based Hi Tech Solutions were the company chosen to provide the infrastructure for a major installation which would allow for the Digital switch-over. The key to the success of the project, says Hi Tech’s Derek Gaeth, lay in their decision to install all components inside 20 foot shipping containers. This allowed for the system-build to take place in the controlled environment of Hi Tech’s own workshops; and greatly simplified transportation to the often remote sites of the transmission stations. Equipment for the larger sites required 5 containers to house batteries, inverters, generators and fuel tanks; together with all the switching gear required for Digital, FM, and Data Transmission. The ‘container’ solution also allowed for short on-site build times – where arrival at bare site to sign-off could be achieved in less than 7 days.

Grid electricity is unreliable, so provision has been made in all locations to include solar power  …virtually guaranteeing 24 hour continuous operation under any circumstances. The power demand at the larger sites is around 12kWh – though this can be reduced in abnormal circumstances and still provide essential services.  Apart from reducing the carbon footprint – most power is diesel generated – the solar power provision also reduces cost: The largest site alone is projected to save FJ$1.3 million over three years.Power from the solar panels is stored in Redflow’s Zinc-Bromine flow batteries. These have been chosen for their long life (10 years – guaranteed); their ability to withstand 100% depletion – without damage, and full recovery; and also because they have proven to operate flawlessly in the high tropical temperatures for which the islands are so popular as a tourist destination.

These large-format 10kWh batteries can be paralleled into huge capacity storage – 600kWh in the largest Fiji installation – though even larger banks have been built elsewhere in the world. An added advantage is that their very weight (of 240kg) is a deterrent to theft in remote locations which cannot be ‘policed’.

Victron 10kVA Quattro Inverter Chargers – configured in both single- and three-phase – were chosen to partner this battery storage for several reasons: Victron technology has been built to work seamlessly with many battery technologies – Zinc Bromine being well-proven; also the Quattro is able to work with two power sources – if the weather turns gloomy for an extended spell, batteries can be recharged with power from a diesel Generator – with automatic switching. Peak power demand or unstable grid conditions will cause the Quattro to patch-in with power assistance – with invisible switching times of 20ms …and also Victron equipment can be remotely monitored and controlled using the Victron Remote Management portal.  The Venus GX has been chosen for this part of the operation.

The specification for the largest full off-grid site is impressive: Designed to supply 24kW continuously it features a 192kW solar array controlled by 15 MPPT solar chargers (Victron 250/100); 600kWh battery storage; 12 x 10kVA Quattro’s – configured for three-phase operation; and 24 Fronius Primo inverters.

Across the network power provision totalling 1.2 megawatts has been built to withstand winds of 350kph.

Hitech is a New Zealand headquartered company which provides infrastructure for the commercial generation of solar power – creating sustainable micro-grids for telecoms, remote communities, broadcasting and connecting the IoT. It’s a credit to the team that not only were they the only company able to provide the Government of Fiji with a plan and costing for this major national installation – but they were able to deliver it, on time, as promised.

With their state-of-the-art digital TV transmission infrastructure, Fijians can now catch up on the latest news from almost anywhere.

Many African Nations like Ghana are challenged with electricity and could expand their grid with such innovative solutions from Nocheski Solar

Credit: this story was culled from the victron energy website The image used at the head of this article is by Nick Hobgood.

Justin Tyers