Punjo is not Puna : Not All Solar Panels Are Equal

Nii koi’s wife was pregnant with their third child, and as usual her food cravings seemed to change by the hour. This morning she wanted Pona yams with smoked fish light soup. Being a great husband Nii Koi dashes  to the nearby  grocery down the road  and ends up being sold Punjo yams ,a lower priced ,larger variety of yam. Most Ghanaians prefer the higher sugar content and finer texture in Pona yams even though they can be quite pricey especially when yams are not in season. Thinking he had found a great deal Nii Koi proceeded to complete his assignment.

His wife was very furious, I will not eat this yam

“All yam be yam he exclaimed” and she hissed back, Punjo is not Pona

To cut a long story short his wife refused to eat the Punjo yams and insisted that he get Pona yams to satisfy her cravings

Jinko Solar panels are durable and efficient

Selling Solar in a harsh economic climate like Ghana can be quite challenging ,it’s not unusual for prospective customers to ask questions such as  “why your solar panels cost Ghc X when so and so in the market is selling it for so much less at Ghc. Y.”

The simple answer is – Not All Solar Panels Are Equal.

Punjo is not Puna : Not All Solar Panels Are Equal

So when you compare prices for solar panels (and we do encourage you to shop around), you do need to pay attention to 2 key aspects of the panel’s quality – GRADE and MANUFACTURER TIER.

GRADE refers to the quality of solar cell used in the solar panel, and are categorized as A, B, C, or D. Grade A cells are the highest quality, in that they are tested against highest quality criteria to ensure there are no micro-cracks in the solar cell, and all the cells are of the same type. The quality diminishes for grade B, which may have micro cracks and not all cells are of the same type (they sometimes mix and match). Grades C and D are much worse quality with larger cracks and chips, and the cell mismatch is even worse.A typical solar cell will be exposed to sunlight throughout its lifetime. Sunlight contains harmful ultraviolet (UV) light that deteriorates all materials, including solar cells. The tiny flaws in the material become worse after prolonged exposure to sunlight, and its power output reduces over time.As a grade A cell has the least flaws to start with, its deterioration will be the slowest.

MANUFACTURER TIER refers to how automated a manufacturer is in its manufacturing process, its manufacturing volume, how long it has been in the industry, and how much it invests in R&D. There are 3 tiers to classify this:

certified engineers installing Jinko Panels in the heart of Ghana capital city,Accra

Tier 1 manufacturers are the top 2% of solar manufacturers, normally producing over 1 GW of solar panels in a year. They are vertically integrated meaning they make their own cells and wafers. They invest heavily in R&D, and have advanced robotic processes for manufacturing. They have been manufacturing panels for longer than 5 years. Tier 2 manufacturers are small to medium scale manufacturers, with little or no investment in R&D. They only use partial robotics in their manufacturing process, and rely more on manual work from human production lines. They have been producing panels for 2 to 5 years. Tier 3 manufacturers are actually just Assemblers – i.e. they assemble other manufacturer’s cells into a panel. This is 90% of the new solar PV companies, with no investment in R&D, and they use human production lines for manual soldering of solar cells instead of advanced robotics. They have been assembling panels for 1-2 years. You get best (and consistent) results from Grade A panels manufactured by a Tier 1 manufacturer. They may cost a little more on a per-watt basis, but when you consider the energy output and the longevity of their panels, you actually get more energy out of Tier 1 / Grade A panels than anyone else. And ultimately, you have to ask yourself what matters to you more — the total number of watts of a solar panel, or the actual kWh (units) of energy produced by the panel?

That’s why we at Nocheski Solar use Grade A solar panels from Tier 1 manufacturers like Jinko Solar, which ensures the best overall value in terms overall electricity output and long-term high quality.Hope this helps you when you compare solar panel prices.Let us know your feedback.All that being said, its  prudent to watch out for unscrupulous industry players  who may be selling counterfeited solar products but that is another whole discussion for another day.

Punjo is not Puna : Not All Solar Panels Are Equal

 

 

 


World’s Largest Floating Solar Power Plant Operational in China

China’s renewable energy trajectory took a leap forward with its floating solar power plant, the largest in the world getting operational recently. The power plant is located in the coal-rich city of Huainan in south Anhui province of China. The system is built by Sungrow Power Supply Co. Ltd., a global leading photovoltaic (PV) inverter systems supplier, and the 40MW plant has been effectively linked to China’s grid.

The system is designed to work in high humidity and salt spray environments. Renxian Cao, President of Sungrow said that they were committed to introducing cutting-edge technologies to products and offering better products and solutions to customers.

The floating solar power plants come with an array of advantages, as they don’t focus on using valuable land in already densely populated areas. The water acts as a natural coolant to the system and improves generation while limiting long-term heat induced degradation. The panels facilitate in conserving freshwater supplies by lowering the amount of evaporation. The Huainan floating solar power plant which is facilitated by a lake, was created by rain after the land surrounding it collapsed due to subsidence, a process which occurs due to intensive coal mining operations.

The plants are reportedly easy to work on and the size of the plant can be easily increased by shipping in a new batch of solar panels and connect them to the floating plant. Though, floating solar systems on water may reportedly face the challenge of rust. The systems need to be waterproof and resistant to seepage.World’s Largest Floating Solar Power Plant Operational in China

China is poised to becoming a world leader in the renewables domain and is committed to a greener and sustainable future. Despite the many challenges of pollution, China is actively adopting new systems revolving around renewable energy  sources.

Source: SolarPower.com Editorial Team


Working with the charity Assolidafrica 07, a group of teachers and students from the French High School Iscles Manosque have been to install lighting and electricity; computers and a photocopier, in two remote schools in Burkina Faso.

Burkina Faso is a landlocked African country just north of the equator whose 17 million people are spread out over 100,000 square miles, and whose official language is French. The two remote schools to benefit from this equipment were College de Boulma and College de Kapon (440 students) – separated by an hour’s drive through the bush by car.

 

Being so remote, on arriving the French students confessed that their first thought was ‘What are we doing here? Is this really a school – where donkeys wander in and out, laundry hangs out to dry right there in the grounds, and villagers are pumping water from a well?’ Assolidafrica 07 have been slowly building the schools for five years whilst lessons to classes of up to 100 pupils proceed.

In a project they named ‘Solaire et Solidaire’, as part of their own education the French students, guided by tutors, designed the off-grid Photovoltaic power supply and lighting/electrical systems they would install. Victron provided training and some of the equipment, and the students approached industry themselves for sponsorship …experience which will be invaluable to them later in their own lives.

The project included the installation of high-quality suspended lighting systems, very professionally wired in trunking; fabrication of roof-top mounting system for the Solar Panels; and the technical installation of PV panels cabled to Charge Controllers, Inverters and the Consumer unit (distribution panel/fuse board).

One of the volunteers, Thomas Tsamen commented: We didn’t have all the tools we needed so we figured it out with the means we did have.’ A point which illustrates the double-benefit of this volunteer program; the volunteers learn as they build projects which provide so much benefit for the African Schools. And as for team-building, working outside handling tools and equipment which the sun has heated to 60 degrees has it’s own challenges! They’re harsh conditions in which students and teachers alike quickly learn that diplomacy is the key to the continuance of smooth relations!

Alan Morel and Jean Paul Nabaloum

In traditional African society the Tribal Chiefs are guarantors of customs and habits. They’re the ones who regulate society and decide all matters relating to development and problem-resolution. The chief of Kapon – dressed in the robes of his office – said ‘Studying is what’s going to save us. If we stay ignorant, there is no development …I’m so glad to receive these panels and this equipment which will light our classrooms and help our education.’

The lighting now installed allows the schools to extend their curriculum into the evening. Speaking at the Completion of the work tutor Rasmané Ouedraogo said: ‘I’m speechless really. Students will have light and electricity to study for their diploma. And with the computer equipment we are making a giant step.’ In Burkina Faso, where a Broadband subscription costs more than the average annual salary, fewer than 5% of the population have access to the internet.

The President of the Parents and Teacher association makes the point that the installation takes a big worry away from parents – about how they would afford an electricity supply.

And the principal of the French High School Iscles Manosque, Cyrille Seguin, acknowledging the commitment of both teachers and students who ‘dared’ to bring the project to his attention …and then carry it out, said of his students: They will carry the richness of this experience with them all their lives.

Boulma middle school supervisor Mr. Kabore

Source:victron energy


Pure solar water: Generating Clean Drinking Water from Air

The leapfrog in solar panels technology addresses the global issue of water supply by providing clean, drinkable water. Think about it, we are all surrounded by air, a form of vapour, water’s gaseous, evaporated state. A new form of solar atmospheric water generators attempts to harness the power of the sun and create clean, drinkable water from the air.

The new type of solar panel could turn moisture in the air to clean drinking water and would be a big boon to families in cities like Guayaquil, Ecuador where there are no city pipes. It could save time for the women in sub-Saharan African who spend an estimated 40 billion hours a year collecting water. The clean water generated could eliminate water-borne diseases.

The new solar panels, which are not for retail sale yet, can be installed at home or office. The panels are said to be self-contained and work on a special membrane which can absorb the water molecules. The water is then treated with minerals to add fresh taste and then stored in on-board reservoirs.

What is the underlying premise of creating clean water? The material which is created reportedly can absorb water from the air. What would happen if you leave a bowl of salt open? It would become clumpy due to the moisture. The solar panel works on the same premise, where the water is evaporated to purify it, and further remove pollutants.

The solar panel technology would cost around $2,900, with no installation costs, and produce around ten small water bottles daily, and is expected to last for around ten years. A single panel could reportedly provide cooking water for a family of four inclusive of hospitals or businesses, which can be scaled up with the use of multiple panels.

When are we getting this new technology in Ghana? We dont know for now

 

Source: SolarPower.com Editorial Team


Erratic power supply AKA Dumsor has always been hot topic these past few  years .Pronounced “doom-sore” (or more appropriately dum sɔ, “off and on”) is a popular Ghanaian term used to describe persistent, irregular and unpredictable electric power outages. Everybody from businesses to households has been affected one way or the other. In addition to this most Ghana residents have had to spend 200-300% more than what they used to spend on electricity five years ago.

2016 Its an election year in Ghana and I hear lot of promises from political parties and politicians alike. These promises include, good roads, education, health, jobs and of course Energy .

Can we be brutally honest with each other as Ghana residents?

  • Our energy demands have risen over the years and we require more capacity
  • Energy prices have risen all over the world and reliance on only hydro isn’t sufficient for Ghana anymore
  • There is no political party that can reduce electricity tariffs to rates that were being paid 5-10 years ago. Even if anybody tried, it wouldn’t be sustainable
  • Electricity prices will continue to rise in the coming years and the time to change our mindset is now
  • Ghana needs a serious national policy plan /implementation on energy matters

I have to admit times are pretty hard in Ghana these days. A lot of people are unable to pay their utility bills. Some have actually resorted to either connecting utilities illegally or using less. A good number of people have been caught some of them being foreign business and all .I also know a few people who switch off their refrigerators or deep freezers at night.

Another interesting fact is that for those who are buying new electrical appliances, price becomes the most important or deciding factor so much  such that efficiency is thrown out of the window.

While interacting with people we get these statements quite frequently: So you tell people to use less electricity and conserve it?” or “Your website has ideas on how to buy appliances, how does that relate to saving electricity?” The easiest way to save energy (or electricity) is to use less of it, but we have to be realistic in our approach. Our lifestyles are changing, and with increased pace of development, our need for appliances is increasing and so is our need for energy.  Thus the ideal mix to save energy will involve both conservation and efficiency. Now let us look at what is the difference between the two.

What is Energy Conservation?

Whenever you use less of something that means that you are trying to conserve it. So if you use a 1100cc vehicle instead of a V8 vehicle, it means that you are trying to conserve fuel (among many other reasons why you would prefer to use 1100CC over a V8 motor vehicle). If you switch off lights when they are not needed, then you are conserving energy. When you increase the temperature at which you operate your air conditioner from say, 24 degrees to 25 degrees, you are conserving energy. You also conserve energy when you switch off your DSTV decoder boxes and TVs when they are not in use.

Energy Conservation is all about using energy only when it is required and using it as much as needed for the job and not wasting any amount of it. It requires a conscious effort from the user of energy to make sure that there is no wastage on a regular basis. It requires a lot of behavioral change and needs effort. It may not need any investment always.

So what is Energy Efficiency?

Energy efficiency in contrast means using lesser energy to do the same job. When you buy a car that gives more mileage, you use less fuel to travel the same distance. When you buy a 5 star rated air conditioner instead of a 3 or 2 star rated air conditioner, it means that for the same usage and in same conditions, you use less electricity (for the same temperature at which you operate them). If you use a 5 star rated air conditioner at higher temperature, you double the effect and combine energy efficiency with energy conservation.

Energy efficiency has more impact on your personal finances. An efficient appliance may cost more than an inefficient appliance. Although the additional capital cost may get recovered in form of electricity savings. Energy efficiency may not require physical effort but requires change in people’s buying patterns. It requires knowledge of various products and their efficiencies. If people start buying more of efficient products, manufacturers will start producing more of them.

Conclusion

Both energy efficiency and energy conservation have the same goal: to save energy and the same impact: saves money. Both can individually save energy but when coupled together can save double the amount of energy and money. It depends on your choices as to which one you like to do. A good mix of the two can ensure high savings with low investments and efforts.


Apparently the economics for backup power alone just aren’t that attractive.

Tesla has quietly removed all references to its 10-kilowatt-hour residential battery from the Powerwall website, as well as the company’s press kit. The company’s smaller battery designed for daily cycling is all that remains.

The change was initially made without explanation, which prompted industry insiders to speculate. Today, a Tesla representative confirmed the 10-kilowatt-hour option has been discontinued.

“We have seen enormous interest in the Daily Powerwall worldwide,” according to an emailed statement to GTM. “The Daily Powerwall supports daily use applications like solar self-consumption plus backup power applications, and can offer backup simply by modifying the way it is installed in a home. Due to the interest, we have decided to focus entirely on building and deploying the 7-kilowatt-hour Daily Powerwall at this time.”

The 10-kilowatt-hour option was marketed as a backup power supply capable of 500 cycles, at a price to installers of $3,500. Tesla was angling to sell the battery to consumers that want peace of mind in the event the grid goes down, like during another Superstorm Sandy. The problem is that the economics for a lithium-ion backup battery just aren’t that attractive.

Even at Tesla’s low wholesale price, a 500-cycle battery just doesn’t pencil out against the alternatives, especially once the inverter and other system costs are included. State-of-the-art backup generators from companies like Generac and Cummins sell for $5,000 or less. These companies also offer financing, which removes any advantage Tesla might claim with that tactic, as GTM’s Jeff St. John pointed out last spring.

“Even some of the deep cycling lead acid batteries offer 1,000 cycles and cost less than half of the $3,500 price tag for Tesla Powerwall,” said Ravi Manghani, senior energy storage analyst at GTM Research. “For pure backup applications only providing 500 cycles, lead acid batteries or gensets are way more economical.”In Ghana  good  quality lead acid batteries such as the AGM telecom batteries retail at $219/Kw/hr and can be purchased at nocheski Solar (Victron Energy partner ) in the port city of  Tema. These AGM batteries have 1800 cycles at a D.O.D of 30% or 750 cycles at a D.O.D of 50%

 AGM telecom battery by victron energy

AGM telecom battery by victron energy

In California, batteries can benefit from the state’s Self-Generation Incentive Program (SGIP). But California regulators have indicated that battery systems need to be able to cycle five times a week in order to be eligible, which would exclude Tesla’s bigger battery.

“In current discussions on SGIP program overhaul, it is very likely that stronger performance requirements may get added, which will make a 10-kilowatt-hour/500 cycles product outright ineligible (if cycled only once a week), or last only 2 years (if cycled every weekday for about 500 cycles over 2 years),” said Manghani. “In short, the market’s expectation is that for a $3,500 price tag, the product needs to have more than just 500 cycles (i.e., only backup capabilities).”

Backup power alone simply doesn’t have as strong a case as using a battery for self-consumption. That said, the opportunities for self-consumption are still few and far between.

A GTM Research analysis for residential storage, purely for time-of-use shifting or self-consumption. found that the economics only pan out in certain conditions. In Hawaii, for instance, the economics of solar-plus-storage under the state’s new self supply tariff looks only slightly more attractive than solar alone under the grid supply option.

“So it comes down to the question of customer adoption of a relatively new technology for only slightly improved economics,” said Manghani. “This doesn’t mean residential customers are not deploying energy storage,” but he noted that these were the early adopters.

Tesla appears to be focusing its efforts on first movers and the markets where storage for energy arbitrage and self-consumption makes economic sense.

While the 10-kilowatt-hour option has been removed, the Powerwall website continues to offer specifications for Tesla’s 6.4-kilowatt-hour battery designed for daily cycling applications, such as load shifting. The battery is warrantied for 10 years, or roughly 5,000 cycles, with a 100 percent depth of discharge. The wholesale price to installers is $3,000.

The smaller battery is often marketed as 7 kilowatt-hours, which would appear to have a price of $429 per kilowatt-hour. In realty, it’s a 6.4 kilowatt-hour battery at a price of $469 per kilowatt-hour.

A bigger, cheaper or more integrated battery product could soon be added to Tesla’s lineup. In January, CEO Elon Musk announced a new Powerwall option will be released this summer.

“We’ve got the Tesla Powerwall and Powerpack, which we have a lot of trials underway right now around the world. We’ve seen very good results,” said Musk during a talk to Tesla car owners in Paris, The Verge reports. “We’ll be coming out with version two of the Powerwall probably around July, August this year, which will see [a] further step-change in capabilities.”

At this point, it’s unclear what the “step-change” will be.

 

 


Why your Lead Acid Battery is all Swollen Up

Working in the solar Energy industry in Ghana, I often come across several batteries that are swollen up .These mostly lead acid batteries have often than not, been purchased at very high prices not too long ago. On this particular occasion our team was conducting a survey at a prospects home in Tema when I noticed that all of her eight 100Ah batteries were swollen.

Typically a 100Ah battery will cost between $200-$300 depending on quality .In addition to this, most suppliers in Ghana give little or no warranty even though some global brands like Victron Energy give up to two year warranty on their batteries .This article aims to reveal to the public why lead acid batteries swell-up and how to avoid the problem.

Sealed lead acid batteries – both AGM and gelled electrolyte can swell up and expand sometimes. This happens due to the construction of lead acid batteries which is referred to as “recombinant”. They are constructed in such a way to allow absorption of gasses released during the chemical process inside the battery.

The positive and negative plates are placed very close together with only the thickness of the divider separating them. They are tightly secured in the cell cavity resulting in very little extra space inside the battery. When the cell plates expand, it exerts pressure on the inside walls of the battery. This situation can cause the battery case to swell resulting in possible splits and cracks at various points of the battery.

Why Do Battery Cell Plates Expand?

The cell plates most often expand due to overcharging of the battery. The battery may also expand due to shorting of the terminals of the battery. Both these situations results in heating up of the cell plates inside the battery. The lead of the cell plates has a high expansion rate when heated.

The outcome is that the battery experiences extreme pressure inside that swells up and deforms it. The swelling-up of the battery may also cause great damage to the internal components and parts.

Why your Lead Acid Battery is all Swollen Up ,How to Avoid Swelling Up of the Battery?

Overcharging or short-circuiting of the battery is the only reason for swelling up of the lead acid battery. The problem is not inherent in the battery itself. In order to avoid swelling up of the battery you need to tackle the underlying cause of the problem.

You need to follow proper instructions in charging the battery. The culprit may be that you are using a wrong charger when charging the battery. If the charger is providing too much current, this may be the cause for battery swelling up. For instance, if you used 24V charger to charge a 12V battery it will most probably result in overcharging of the battery.

Whatever the reason for overcharging of the device, the end result is the swelling up of the battery. To avoid the prospect of overcharging or short-circuiting of the battery, you need to take the following precautions:

  • Use the right type of charger that is fully compatible with the battery.
  • Ensure proper polarity when connecting the charger to the battery
  • Shield the battery terminals to avoid short-circuiting of the battery
  • Use a charger whose maximum charging capacity is lower than the battery
  • Using a good quality charger
Victron Energy Blue smart charger is a good choice for small battery banks in Ghana

Victron Energy Blue smart charger is a good choice for small battery banks in Ghana

 Battery charging tip: increase battery life with Victron 4-step adaptive charging

Victron developed the adaptive charge curve. The 4-step adaptive charge curve is the result of years of research and testing.

The Victron four-step adaptive charge curve solves the 3 main problems of the 3 step curve:

  • Battery Safe mode

In order to prevent excessive gassing, Victron has invented the ‘Battery Safe Mode’. The battery Safe Mode will limit the rate of voltage increase once the gassing voltage has been reached. Research has shown that this will reduce internal gassing to a safe level.

  • Variable absorption time

Based on the duration of the bulk stage, the charger calculates how long the absorption time should be in order to fully charge the battery. If the bulk time is short, this means the battery was already charged and the resulting absorption time will also be short, whereas a longer bulk time will also result in a longer absorption time.

  • Storage mode

After completion of the absorption period the battery should be fully charged, and the voltage is lowered to the

float or standby level. If no discharge occurs during the next 24 hours, the voltage is reduced even further and the battery goes into storage mode. The lower storage voltage reduces corrosion of the positive plates.

Once every week the charge voltage is increased to the absorption level for a short period to compensate for selfdischarge (Battery Refresh mode

The above tips will help you to protect your battery from swelling up and expanding. Taking precautions will not only protect your battery from being damaged but it will also minimize the threat of fire caused due to overheating of the battery.

Click here for more information on Victron Energy AGM & Gel batteries


Air conditioning & the rising electricity tariffs in Ghana

My Nigerian friends often say Ghanaian folk have a signature look, very dark skin and red eyes. This they claim is as a result of the scorching sun in Ghana. Ghana is hot o…….

Average temperatures often range between  35-40 degree Celsius with high levels of humidity . Due to the nature of the weather in Ghana Air-conditioning is no longer a luxury.Most homes and offices who can afford , have invested in one form of cooling or the other while those who cant have settled for fans.But what happens when there is erratic power supply and load shedding  AKA Dumsor  in Ghana? I bet that is another topic for another day.

little children cooling off in bowls of water at home on a sunny day in Accra

Recent electricity price hikes in Ghana have made Air Conditioners a pain point for most who are concerned about their electricity bills. Electricity bills increase significantly when an air conditioner is added to the list of appliances in a household. Although it is difficult to significantly reduce the “big” impact of an air conditioner on your electricity bills, it can be managed by choosing the right technology, and following the right installation/maintenance/operation procedure and also putting into consideration the insulation of room where the air conditioner is being operated.The latest and the most efficient technology that is available on market today is the Inverter Technology for air conditioners. Inverter technology is designed in such a way as to save 30-50% of electricity (units consumed) compared to regular air conditioning systems.At Nocheski ,we live up to our promise of driving your business with technology and we recommend the use of energy efficient appliances such as inverter Air-conditioners from brands including LG,Daikin and Samsung , Gencool just to name a few.

How do air conditioners work?

For most people, air conditioner just throws cool air at the temperature one sets it at. But does it really work that way? In principle, an air-conditioner during the cooling process, takes the indoor air, cools it by passing it through evaporator and releases it back in the room. It is quite opposite to how our good old air coolers used to work. Air coolers used to take outside air, cool it with water and throw it in. But air conditioners just work on internal air. Along with evaporator an air conditioner also has a compressor that compresses the gas (refrigerant) in the AC to cool it that in turn cools the incoming internal air from the room.

In a regular air conditioner:

The compressor is either off or on. When it is on, it works at full capacity and consumes the maximum electricity it is designed to consume. When the thermostat reaches the temperature level set in the AC, the compressor stops and the fan (in AC) continues to operate. When the thermostat senses that the temperature has increased, the compressor starts again.

Air Conditioners with Inverter Technology

The inverter technology works like an accelerator in a car. When compressor needs more power, it gives it more power. When it needs less power, it gives less power. With this technology, the compressor is always on, but draws less power or more power depending on the temperature of the incoming air and the level set in the thermostat. The speed and power of the compressor is adjusted appropriately. Originally developed in Japan for use in air-conditioning systems, digital inverter technology is now applied globally in appliances such as refrigerators, washing machines and even microwave ovens.

Samsung has a new line-up of household appliances for the digital home that saves on cost and offers more features.

Samsung has a new line-up of household appliances for the digital home that saves on cost and offers more features.

What is benefit of Inverter Technology?

Every air conditioner is designed for a maximum peak load. So a 1.5hp AC is designed for a certain size of room and 1 hp for a different size. But not all rooms are of same size. A regular air conditioner of 1.5hp capacity will always run at peak power requirement when the compressor is running. An air conditioner with inverter technology will run continuously but will draw only that much power that is required to keep the temperature stable at the level desired. So it kind of automatically adjusts its capacity based on the requirement of the room it is cooling thus requiring less electricity for efficient operation although air conditioner with Inverter Technology adjusts its capacity based on the room requirement, it is very important to install a right sized air conditioner in a room. Please make sure that you evaluate the room and air conditioner capacity before you make a purchase.For further clarifications on this subject ,you may contact our produuct specialist in Tema  here