Victron Energy CANvu GX …information you can touch! It’s so convenient to be able access all your system information via touch screen – and because the Victron Energy GX is a sealed-unit, you can install it in some challenging environments!

P67 rating of the Victron Energy  CANvu GX means that it is completely protected against dust ingress, and can even withstand half an hour’s immersion in water 1 metre deep!

The Victron Energy CANvu GX is the latest addition to the Venus family – the information gateway which allows you to set-up, monitor and manage all the component parts of your private energy installation. In exactly the same way as you use the CCGXVenus GX; and Octo GX – the Victron Energy CANvu GX gathers data from your Inverter/ChargerBattery MonitorSolar Charge Controller, and batteries to allow optimal communication between components, maximising battery-charging and solar harvest.

And, of course, it allows you to interrogate the status of each device. But amongst the whole family, it is the Victron Energy CANvu GX which is ideal when the information is required to be displayed outdoors, or in difficult environments.

The arrival of the Victron Energy CANvu GX will be welcomed particularly by those users who work in the open. It is entirely at home on board vessels at sea, or on building sites – in applications such as the control panel of Hybrid Generators. It is also ideal in factories where industrial processes are wet, or dusty.


The unit comes with a dash/fascia mounting kit:


Please note that in order to operate the Victron Energy  CANvu GX you will need an IO Extender and wiring kit, and that this must be ordered separately:

The full colour screen of the Victron Energy  CANvu GX will be familiar both in appearance and size to anyone who has seen or used the CCGX. The system offers 3 VE.Direct ports and one USB port; a second, separate CAN-bus port; and it can receive digital inputs. It doesn’t have a buzzer. WiFi is not built-in, but a USB WiFi dongle can be attached. A comparison of features between all members of the GX family can be found here.

Justin Tyers


Lithium SuperPack batteries – an all in one solution .These new Lithium-Ion, LiFePO4 chemistry batteries are often an ideal replacement for many 12V and 24V marine, automotive, caravan, motorhome, work vans and similar battery applications. It might even be for an overland motorcycle if using the smallest 20Ah version; to recharge a camera, phone or laptop for instance.

Other examples – take a typical small boat or van which may have a 110Ah to 220Ah lead-acid leisure battery for light continuous loads such as lighting, laptops, phones, instruments, powering a diesel heater, a fridge etc. And for shorter term loads maybe add a small inverter to charge power tools, run a small microwave or travel kettle for example. Using one SuperPack battery it matches well with the Phoenix Inverter VE.Direct 250VA – 1200VA range. Maybe you’ll add in around 100 to 200Wp of solar panels too using a small MPPT.

Regardless of the use, whichever SuperPack you choose it’ll be lighter than lead, can be smaller if you wish or give you more Wh in the same space – plus give you around 5 times the cycle life.

The main difference to Victron’s other lithium (often more kWh) offerings are the SuperPacks keep everything in one package, by having an integrated BMS and safety switch built-in. No additional components are needed as the internal switch will disconnect the battery in case of over discharge, over charge or high temperature. Simple, compact and safe.

If you are considering a new battery don’t immediately discount Lithium as being too costly. Whilst it is true that the capital cost of Li-ion is greater than that of quality AGM or Gel batteries – it is also true that the cost of ownership can be less than lead acid types. Much depends on your application, but rest assured – life with Li-ion is far less hassle than lead.

Over the last 8 years on my sailing yacht I’ve run AGM lead leisure batteries and Lithium-Ion propulsion batteries. Initially it was AGM for propulsion before discovering the effectiveness of Lithium. That journey taught me a lot about loads, capacity, cost and battery life – it’s one of the reasons why I think we’ve reached a tipping point and why these new SuperPack batteries may just be the ticket for your next project or battery replacement.

If in the first instance you are unfamiliar with AGM vs Lithium, then here’s a blog that explains that.

When to use a SuperPack?

Every battery size and type has it’s own particular use. For instance you may use the Lithium battery 12,8V & 25,6V Smart and the Lithium battery 24V (LiFePO4 & NMC chemistries) ranges (all of which have an external BMS) in quite different applications to the new SuperPack range. So, where to use the SuperPacks?

When it comes to replacing lead acid type batteries such as AGM and Gel in many applications, the SuperPack range can be considered the next generation after lead – making it far easier to replace lead with lithium. The only caveats being replacement is down to certain parameters being met, namely – Capacity (Ah), Voltages (12.8V & 25.6V), Discharge and Charge currents (C rates). Do in that case be sure that your chosen replacement fits your criteria by checking the datasheet and be aware the SuperPacks can be connected in parallel, but not in series. Hence in that case you would consider the other Victron lithium products named above.

The Lithium SuperPack

Victron Energy’s recently introduced Lithium SuperPack range comes in the following capacities and voltages:

12.8V & 25.6V Lithium SuperPack batteries:

  • 12.8V – 20Ah
  • 12.8V – 60Ah
  • 12.8V – 100Ah
  • 12.8V – 200Ah
  • 25.6V – 50Ah

These SuperPacks will give you 2,500 cycles to 80% depth of discharge at 25°C, much more than lead.

Comparison: SuperPack 60Ah LiFePO4 vs 90Ah AGM

Let’s compare the 60Ah Li-ion to say a typical 90Ah AGM battery discharged to the commonly accepted economic cycle life of 50% discharge for lead. That would give us 600 cycles at that DOD for the AGM compared to 2,500 at the even deeper discharge of 80% for the LiFePO4. Already you can see you may need to replace your lead-acid type battery 2 to 4 times as often as the Lithium. Of course loads, operating conditions and calendar life have to be factored in too. Regardless you get the idea – Lithium does more and lasts longer.

The benefits of Lithium don’t stop there though. Whilst LiFePO4 chemistry is considered the safest of them all, it’s worth considering other factors too to decide whether the reduced weight and volume of say NMC is of more importance for your application than LiFePO4 for example. Victron Energy do both types. These star graphs do a good job of explaining the differences: https://batteryuniversity.com/learn/article/types_of_lithium_ion

60Ah SuperPack

90Ah AGM

Weight
9.5kg 27kg
Size (mm)
229 x 138 x 213 350 x 167 x 183
Useable energy @ 25°C
614Wh 540Wh
Cycle life
2,500 cycles 600 cycles
Cost
x 2.5 (approx)  x 1

Notes for the table above:

  • Useable energy and cycle life are based on 80% depth of discharge for Li-ion and 50% for AGM, these being considered the most economic use of those battery types.
  • Higher loads with lead will further reduce available Wh (Peukert’s Law) when compared to Li-ion.
  • Capacity is also reduced for both types by temperatures below their 25°C temperature rating (see their respective datasheets)

Make what you will of the above and whilst you are pondering the pros and cons don’t forget to take these additional factors into account for the comparison above.

  • Shipping: If you are replacing your lead from 2 to 4 times as often as Li-on and the fact that the lead weighs around 3 to 4 times as much (depends on Li-ion chemistry used) – then do consider the extra shipping costs.
  • Voltage stability: The voltage profile is far flatter for Li-ion compared to lead.
  • Voltage sag: Subject to the load, voltage sag with lead is significant compared to Li-ion.
  • Li-ion has much faster charge times and if charging from a generator it saves on generator runtime.

Other factors to consider

Is the above enough to convince you of why Lithium might be a better alternative than AGM or indeed Gel? Personally I’m sold on Lithium, but if you are not here’s a few things further to consider:

  1. A lead-acid battery will fail prematurely due to sulfation if it operates in deficit mode for long periods of time (i.e. if the battery is rarely, or never at all, fully charged). It will also fail early if left partially charged or worse, fully discharged.
  2. By comparison a Lithium-Ion battery does not need to be fully charged. This is a major advantage of Li-ion compared to lead-acid which needs to be fully charged often to prevent sulfation.

  1. Efficiency. In several applications (especially off-grid solar), energy efficiency can be of crucial importance. The round-trip energy efficiency (discharge from 100% to 0% and back to 100% charged) of the average lead-acid battery is 80%.
  2. The round-trip energy efficiency of a Li-ion battery is 92%.

  1. The charge process of lead-acid batteries becomes particularly inefficient when the 80% state of charge has been reached, resulting in efficiencies of 50% or even less in solar systems where several days of reserve energy are required (battery operating in 70% to 100% charged state).
  2. In contrast, a Li-ion battery will still achieve 90% efficiency even under shallow discharge conditions.

Make the switch?

Are you ready to make the switch from Lead to LiFe? If you’ve considered all the above I suspect you might be. And if you need more useable Ah why not run the sums on say a 100Ah Lithium SuperPack vs 220Ah AGM using the process I have above. Or indeed a 200Ah Li-ion SuperPack vs your choice of lead.Lithium SuperPack batteries – an all in one solution

Don’t forget too that Lithium has little or no Peukert effect when compared to Lead types. This is especially important when considering loads with lead-acid higher than 0.05C (Battery Ah divided by 20 or Ah multiplied by 0.05). In other words for a 100Ah AGM with a Peukert of say 1.15 or more and discharging at 0.25C (25 Amps in this case – which is 5 times the 20 hour rate) there will be significant reduction in capacity – as there will be at colder temperatures too. Li-ion has a Peukert of around 1.05 when compared to lead of around 1.15 to 1.25.

So – if you were discharging that 100Ah lead at 5 Amps (the 20 hour discharge rate at a temperature of 25 degrees centigrade) then the full capacity of 100Ah is still availaable and it’s not shrunk due to Peukert. But now if it were 0.25C, it’ll be around 80% of that original 100Ah capacity – or less, subject to load type and duration.Lithium SuperPack batteries – an all in one solution

The bottom line is you no longer have the Ah you purchased, whereas with Lithium there is little to no effect, helped by a lower Peukert and good voltage stability. That is especially important with constant inverter loads – a place where lithium shines. If you want to learn more about Peukert and run a spreadsheet to see such effects, then I have found this link most helpful.

Finally and one I’m always grateful of is vastly reduced charge times, no more waiting for hours of lead absorption charging to get from 80% to 100% SOC. Conversely Li-ion flies up to around 98% SOC in bulk with those last few percent in absorption to fully balance the cells – and unlike lead you don’t always have to fully charge to 100% as often. Note that your 12V charging system needs to accommodate 14.2V – 14.4V ‘absorption’ and ‘13.5V’ float. If charging from an alternator also note the maximum continuous charge currents for the 12.8V range, by checking the datasheet.

Downsides

Not wanting to sound too evangelical, we also need to consider the few downsides of Li-ion.

  • Higher upfront cost and to some extent higher capital risk.
  • Charging is restricted to the +5°C to +45° range, subject to an internal means of blocking the charge source when the temperature is below +5°C. Note this is currently automatically possible with Victron MPPTs when used in conjunction with the Smart Battery Sense for instance. Other products are being worked on to achieve this too and documentation to that effect will be updated in due course.
  • The SuperPack (unlike other Victron Lithiums) is not designed for series connections.
  • The peak and maximum continuous discharge current of the SuperPack range is not as much as some of our Lithium batteries as its related to the BMS and the disconnect being internal to the battery – so do check the datasheet to make sure the current peak and discharge ratings suit your needs – or choose from the Lithium battery 12.8V & 25.6V Smart or the Lithium battery 24V range or build a parallel SuperPack bank.Lithium SuperPack batteries – an all in one solution

Conclusion

Whatever your decision when purchasing new batteries, maybe it is time to give the Lithium SuperPack batteries a chance. There’s LiFe after Lead you know – but as I’ve shown that all depends on what you want to achieve. Is it less weight, less volume, maybe it’s capacity or voltage or any of the multitude of factors that go into choosing a battery system.Lithium SuperPack batteries – an all in one solution

Whatever you choose Victron have plenty of choice – with a large range of battery types and sizes: https://www.victronenergy.com/batteries

John Rushworth


Official opening: VICTRON-Competence Centre, Klagenfurt

A little over a year ago Victron Energy in association with Austrian Victron Energy dealer E-BOX Off-Grid Power Systems, together with HTL1 Lastenstraße and their headmaster Dr. Michael Archer forged a partnership to utilise Victron Energy products for their varied educational program – to build a ‘Competence Centre’.

As a result on Thursday, 5th December 2018, the new VICTRON-Kompetenzzentrum (VICTRON-Competence Centre) for ‘Renewable Energy and Storage Technology’ was opened at the school.

HTL1 Lastenstraße is a Higher Technical Institute in Klagenfurt, southern Austria, with around 1100 students and 120 teachers. The school trains engineers in the fields of mechanical engineering, electrical engineering and mechatronics. It has around 34 workshops and laboratories as well as several competence centres. Another focus is ‘Land und Umwelttechnik’ (agricultural engineering and environmental technology).

This all makes HTL1 a unique training centre, not only for students from Carinthia but southern, eastern and western Austria. With the new VICTRON-Competence Centre training courses will specialise in the fields of energy storage technology, photovoltaics and energy management. Besides these courses Victron Energy have also been welcomed to run their own special courses at the school. In addition, interested companies will also have the opportunity to use this modern infrastructure for their own education and training events.

HTL1 Lastenstraße – The school is equipped with many different, modern photovoltaic-systems.

The school were particularly pleased to receive a visit from Victron Energy sales manager Leo Yntema  for the opening. Here’s a brief video (in German) of that visit and a few photos from the opening event.

https://youtu.be/r9wasVuZIUU

From left to right: Manfred Hartner – Managing Director of  E-BOX Off-Grid Power Systems, Dr. Michael Archer – Principal of HTL1 Lastenstraße and Leo Yntema of Victron Energy.

A student explains one of the 5 Workstations and its components at the opening.

From left to right: Andreas Albel, the teacher who is responsible for the VICTRON-Kompetenzzentrum and Leo Yntema of Victron Energy.

Equipment utilised

There are 5 workstations utilising Victron Energy equipment. Each workstation is equipped with its own separate 3kWp photovoltaic-system, plus each of the panels can be switched on and off separately.

Workstation 1: components / power storage / 3-phase
  • 3 x MultiPlus 48/3000/35-16
  • 1 x Color Control GX
  • 1 x Battery Monitor BMV-700
  • 4 x LiFePO4 battery 12.8V/90Ah – BMS
  • 1 x Battery Management System VE.Bus
Workstation 2: components / power storage / 1-phase
  • 1 x MultiPlus 48/3000/35-16
  • 1 x Color Control GX
  • 1 x Wall mount enclosure for Color Control GX
  • 1 x Battery Monitor BMV-700
Workstation 3: components / power storage / 1-phase
  • 1 x ECOmulti 24/3000/70-50 2,3 kWh LiFePO4
  • 2 x LiFePO4 battery 12.8V/90Ah – BMS
Workstation 4: Components / power storage / DC coupled
  • 1 x BlueSolar MPPT 150/85 CAN-bus
  • 1 x Wall mount enclosure for Color Control GX
  • 1 x Battery Monitor BMV-700
  • 1 x Venus GX
  • 24 x OPzV 200 Batteries
Workstation 5: Components / power storage / DC coupled
  • 1 x EasySolar 48/3000/35 MPPT 150/70 with Color Control GX built-in
  • 24 x OPzV 200 Batteries

Conclusion

It’s great to see the new VICTRON-Competence Centre now open and we trust it will serve as a valuable resource for the school and the young engineers of tomorrow.

This artcle was orriginally published on the victron blog by John Rushworth on January 31st, 2019

Links

Interview with Dr. Archer – https://www.victronenergy.com/blog/2017/11/13/back-to-school-with-victron-energy/

HTL1 Lastenstraße Klagenfurt Website – http://htl1-klagenfurt.at/index.php/en/

HTL1 Lastenstraße Klagenfurt on Facebook – https://www.facebook.com/HTL1.Klagenfurt/

E-BOX Off-Grid Power Systems Website – http://www.e-box.co.at


Siemens partners WestPark for industrial park in Takoradi

Siemens has announced it has signed a Memorandum of Understanding (MOU) with WestPark Enterprises to develop an expandable microgrid solution for the fast-growing industrial and business park based in Takoradi, Western Ghana.

The Westpark aims to eliminate many of the challenges faced by companies doing business in Sub-Sahara Africa, such as access to reliable power, water, broadband internet and transport.

 The new industrial park is poised to accelerate the transformation of Takoradi – Ghana’s third-largest city.To lay the foundations for reliable, competitive and efficient energy, WestPark has entered into a partnership with Siemens.

As part of the agreement, Siemens will develop a 250kW microgrid that controls the energy generation for the initial phase of buildings to be constructed at WestPark.

Siemens will design the microgrid so that the first phase of WestPark can be powered entirely by renewable energy and therefore provide a sustainable and cost-effective solution for tenants.

On-site photovoltaic panels will power the microgrid and a back-up battery storage solution will be sourced as well.

The grid can be expanded as more buildings are added with the aim of ensuring that the park remains powered by renewable energy.

According to Sabine Dall’Omo, CEO of Siemens Southern and Eastern Africa, “This project is perfectly in line with Siemens’ vision for future business in Ghana and other African countries. As a company, we are continuously looking for new responsible and efficient energy and infrastructure solutions, and our collaboration with WestPark is a good example of how we can support partners with similar goals.”

Siemens is specifically committed to economic growth across Africa, and in doing so in a forward-thinking manner by implementing environmentally sustainable solutions that will help its partners and customers succeed in today’s environmentally-conscious global market.

Siemens AG is a German conglomerate company headquartered in Berlin and Munich and the largest industrial manufacturing company in Europe with branch offices abroad. The principal divisions of the company are Industry, Energy, Healthcare, and Infrastructure & Cities, which represent the main activities of the company.


We’ve just added two Bluetooth enabled Inverters to our range. The new-build Victron Energy Phoenix Inverter Smart models are rated at 1600VA and 2000VA and we have models for 12V, 24V and 48V systems.

  • Dynamic cut-off/intelligent restart
  • We’ve added  48V models to the range
  • Bluetooth communication – allows easy set-up and monitoring on your phone, laptop or smart device
  • Slimline design allows for discreet wall-mounting
  • Eco mode

Bluetooth …and VE.Direct

Bluetooth has been built in to the Victron Energy Phoenix Inverter Smart – allowing your power consumption to be monitored, or the settings changed, straight from your phone, tablet or laptop via our VictronConnectapp – which is free to use. Victron Energy Phoenix Inverter Smart also has a VE.Direct communication port allowing wired connection to a tablet or laptop via an optional VE.Direct to USB cable. The unit can then be set-up and programmed using VE Configure software.

Built in Bluetooth allows you to view live data on your mobile phone, laptop or smart device via our VictronConnect app – which is free to use.

Dynamic Cut-off

Your battery is protected by a user-defined low voltage alarm.

The alarm will be followed by an automatic cut-off – the value of which is Dynamic: For example, if the inverter is providing a lot of power at the time a low-voltage condition is detected, the unit will perform its disconnect at a lower battery-voltage than if it were providing only a modest amount of power. When only a modest amount of power is being drawn, cut-off will take place immediately a low-voltage condition exists. See the Manual for full details.

Intelligent re-start

A cut-off will be followed by three intelligent restart attempts. If the cut-off was triggered by a sudden but temporary drop in voltage, the load will be reconnected. A thirty-second delay ensures that the increase in voltage which has been detected is enduring.

ECO mode

In ECO mode some Victron Energy Phoenix Inverter Smart units consume just 0.6 watts – so they can be left in ‘standby’ for extended periods without worrying about the battery running down between jobs. ECO mode is intelligent, too: When the power being provided by the device falls below a certain value – it will automatically enter standby mode. As soon as it detects a load above a preset ‘snooze’ limit, the unit will remain on, to power this new demand.

LED diagnostics

Similarly to its predecessors, the Phoenix Inverter Smart is equipped with ‘traffic-light’ LED’s – the behaviour of which relate to the Inverter’s current ‘status’ – providing you with information concerning which mode the unit is in, whether any alarm conditions exist, or if an automatic trip has taken place. In depth information can be found in the manual. Bluetooth connection to your smart device provides deeper analysis.

The Victron Energy Phoenix Inverter Smart – which weighs around 12kg – can be tidily installed in an out-of-the-way location, thanks to its slim profile, and sturdy mounting plate. But if it’s tucked away – what about reaching it …to turn it on and off? No problem – a remote on/off switch is available.

 

Summary

True Sine Wave power output can be used for sensitive electronics such as computers; and it’s Peak Power capability – of around twice its ‘continuous’ rating – will supply the inrush current typically drawn by workshop tools such as drills, jig-saws, sanders and LED lamps. It can continuously power all the comforts of home – such as Microwave cookers, vacuum cleaners – even pressure washers.

Phoenix Inverter Smart continues to use ultra-reliable ‘full bridge’ configuration and toroidal transformer topology – all housed in a stainless steel case – to provide years of worry-free service.

Phoenix Inverter Smart is a protected against short-circuit, and overheating.

Inverters for every requirement

We have  Inverters, and Inverter/Chargers for every possible requirement – from compact 175W models to 144kW – configurable for 3-Phase; Multi source AC; and even for Assisting Grid-Power. In Ghana call +2332442700092  or visit our facebook page  to find the right Inverter for you.


How solar is changing Ghana’s real estate market ? If you are involved in the business of constructing a new building in Ghana, whether it’s a logistics center, a manufacturing plant or a multi-family residence in East Legon, most likely installing solar panels was mentioned at some point in the process. Solar panels are being integrated into more and more new constructions, and some cities like Tema and Accra are leading the way.

Our research also indicates that there is a high demand for 2-3 bedroom houses and the cost of land and litigation has pushed the direction of real estate developments into apartment complexes rather than single detached or semi detached homes. Rooftop solar is a great investment that can generate hundreds of thousands (if not millions) of dollars and has a return on investment of just 3-5 years. It increases the life of the roof, and the value of the property. Every owner, architect and general contractor should consider how they can integrate solar in their new construction.

This renewable energy revolution is a global one and many new home owners in Ghana are currently considering going green in their next real estate project, .with an average daily effective sunshine hours of 5.5 hours, Ghana is a great place to go solar. There is generally a hunger for renewable energy options even though many do it for  environmental and energy security reasons. Another school of thought indicates that the rising costs of diesel and the effects of pollution are gradually giving diesel generators an “uncool”  or even “savage” tag. How solar is changing Ghana’s real estate market ?

But where do you start? Should you integrate solar into new construction or just wait until later?

No Muss, No Fuss

The first thing to note is that adding solar to a new building doesn’t mean you need to redesign the whole building. In fact, only minor adjustments, if any at all, will be needed. However, there are some things to consider that will make the process of switching to solar easier. By planning ahead and integrating solar during construction, you can tap into efficiencies during construction and save money.

An nocheski installer installing a Victron Energy multiplus compact inverter

For example, you should ensure the structural load of the roof can support a solar PV system. Most roofs can support solar without structural reinforcements, but if your current building design can’t support solar, you want to catch this early on before you begin construction.

Brighten up the Bottom Line

You can also integrate solar into your building design, saving money by making the solar installation process more efficient. A few examples of this include strategic designs that may consider ventilation, insulation and air conditioning units, and integrating the solar system’s electrical wiring and equipment into your building design. This type of planning will lower your overall cost of solar installation whilst adding an energy efficient tag to the project.

Get In and Get Out

The last thing to consider is that installing solar during construction minimizes the disruption to your operations. Once your building is operational, installing solar will have minimal impact on your day-to-day work, but it is always better to complete the installation before people are in the building. That way, you will be producing clean energy and saving money from day one. How solar is changing Ghana’s real estate market?

The Future is Bright

Thousands of companies install solar after the building is complete, but some forward thinking can make your solar installation cheaper and more efficient. The process of transitioning to solar can be daunting. As the CEO of Royal Estates Group, Mr. Stanley Owusu shared regarding the company’s recent transition to solar panels, “I couldn’t make heads or tails of it.” They turned to a Nocheski solar to help them navigate the design process, solar installation.The result is the installation of several Victron multiplus inverters in Oasis estates projects.The evidence is clear that whether you’re a business owner or a commercial real estate developer, solar is an excellent investment opportunity. Integrating solar into a building during construction only gives an added boost to the economics.Real estate stakeholders such as architects, builders and homeowners may contact us on 0244270092 or email [email protected] for inquiries and how they may benefit from expert advice for prospective real estate projects.


Why do solar street lights fail in Ghana ?Why are our streets so dark? Why are we not seeing working solar street lights in our streets today?

The answer is simple: some stand-alone solar street lights cause more problems than they solve. In some cases they don’t solve any problems at all.In Ghana a lot of streetlights are installed during  the election year ,streets are kept lit constantly and then all of a sudden the lights go out and never come on again.In recent times regular streetlights have been replaced with stand alone solar streetlights and some of them are quite fancy.

Smart Solar Street Light installation in Antigua and Barbuda

The real question is still whether this technology is economically feasible right now or whether we should wait for technology to evolve further before we take the inevitable plunge.The question of feasibility has reared its head due to bad decisions on the implementation of inadequate solar
components combined with “quick fix” solutions versus sustainable, long-term solutions.
The solar street light is a prime example of this. How many solar street lights have you seen that are not in working order? If you haven’t seen any solar street lights at all, it may be that the local municipality has not been convinced of the feasibility of these systems because so many systems have failed to date.
The solar street light is mostly sold as an LED street light with a battery box and a solar panel mounted on top of a 6 – 9 m pole. This is known as a “stand-alone” solar street light. The theory is that the solar panel will charge the battery during the day and, at night, the light will use the power stored in the battery to provide light.This idea should be considered a match made in heaven and a solution to many problems: streets lights use a lot of electricity and eliminating even only half of this consumption would lighten the strain burden on the grid. LED has a much longer life expectancy, so maintenance costs on the lights should
be minimal. So why do we not see this exciting development in our streets today? The answer lies with a combination of quality and longevity and with an understanding of the products.

Victron Energy’s highly efficient, ultra fast MPPT Solar Charge Controllers provide more efficiency in solar street lighting

The lighting units use quality components. The solar panels are 24% efficient (about as good as you can get commercially) and the LED lights are among the best at 160 lumens per watt (lm/W). The more lm/W a lamp produces the more efficient it is.A traditional incandescent light is around 15 lm/W, an energy-saving fluorescent bulb is around 60 lm/W. Easy then to see the attraction of solar power for free and lamps that are over 10 times as efficient as old fashioned bulbs – all which nicely meets companies requirements for improvements in sustainability and efficiency.

EnGoPlanet Inc ,a New York based company chose to use Victron Energy’s highly efficient, ultra fast MPPT Solar Charge Controllers, plus Victron batteries together with lighting options such as:

  • Wireless internet connection for remote control and management.
  • Smart Cameras.
  • Sensors for collecting various environmental data.
  • Mobile phone charging stations.

Their Smart Solar Street Lights are used in the Kuwait project, where 140 units have been installed. Petar Mirovic, CEO of EnGoPlanet tells me that the success of the project has interested other oil companies too, such as Saudi Aramco who are considering an installation of over 1,000 units in the coming months.

Well – that all sounds to me like a recipe for success!


When it comes to the buying decision for solar inverters, some buyers might be inclined to only look at pricing and spec sheets. While these are certainly buying criteria that should not be neglected, it is just a small portion of the bigger picture that needs to be looked at when choosing an inverter brand – because an inverter is more than what’s in the box.But why should you even consider Fronius Solar inverter?

As the solar inverter industry is becoming more commodified every year, inverter spec sheets are starting to look a lot more similar. Many inverter capabilities are driven by the same market requests and NEC code regulations, making features and pricing very similar across all inverter brands in the market. Therefore, a buyer could think that the only thing to look at is the price tag. However, it’s crucial to actually look past the spec sheet and the initial purchase price. When picking an inverter, you not only chose a piece of equipment, you are choosing a partner to work with for the next 20+ years. Thus, you might want to look into more than just “the box” and its price.

So what specific buying criteria is there beyond specs and price? The inverter is a critical component of a solar system, as it is not just responsible for DC to AC conversion, but also for the safety of a system, maximum power point tracking, grid interconnection and system monitoring. It is obvious that the inverter and its performance have a big impact on a system’s Levelized Cost of Energy (LCOE) and profitability – inverter uptime, operation & maintenance (O&M) programs and warranty matter in that regard, and this is where the company behind the inverter plays a crucial role.

54kw fronius solar power system installed in Accra

When choosing an inverter partner for the long term, it is crucial that this partner is around beyond the lifetime of a system. Therefore, financial stability and bankability, as well as a global footprint with a local support infrastructure are key aspects to look at. There is no doubt that the fairly fragmented inverter market will see further consolidation, given the ongoing price pressure. This increases the risk of certain manufacturers going out of business and leaving both installers and system owners in the lurch.

Furthermore, an easy to reach manufacturer support hotline and personal, long-lasting relationships on manufacturer’s level help installers through the entire process from designing systems to after-sales service for 20+ years – ensuring uptime and quick service. Since all power electronics can fail at some point, customer-friendly warranty terms and an easy RMA process are making a big difference. Power electronics manufacturers from advanced industries even offer spare part kits among certifications for contractors to conduct repairs cost-effectively in the field and within one truck-roll – a big impact on the profitability of a system.

All these aspects make a big difference and cannot be found on a spec sheet or on the price tag. Make a smart choice. Do not just look at the spec sheet and the price tag, when picking your  solar inverter. It’s a decision that will impact you over the next 20+ years and you want to be sure that your considerations are aimed at this period of time too.That is why Fronius solar inverters is a great choice.

NOCHESKI – YOUR INVERTER PARTNER FOR THE LONG TERM

Fronius has been in business for more than 70 years and shows a proven track record of long-lasting customer relationships and ongoing support for every product ever shipped. The company is privately held and cash operated, providing highest bankability. Fronius business is based on three independent business units which focus on completely different industrial sectors (Welding, Solar, Battery Charging) – yet they are based on a common technological focus on energy conversion. The Fronius 24/7 Service Solutions for inverters include online monitoring, Solar Online Support around the clock and the Fronius Solutions Provider program, a network of certified installers with direct access to Fronius.

To learn more about the Fronius Solar Solutions, contact [email protected] today or call 0244270092 to speak to our product specialist


In the biggest blow he’s dealt to the renewable energy industry yet, President Donald Trump decided on Monday to slap tariffs on imported solar panels.

The U.S. will impose duties of as much as 30 percent on solar equipment made abroad, a move that threatens to handicap a $28 billion industry that relies on parts made abroad for 80 percent of its supply. Just the mere threat of tariffs has shaken solar developers in recent months, with some hoarding panels and others stalling projects in anticipation of higher costs. The Solar Energy Industries Association has projected tens of thousands of job losses in a sector that employed 260,000.

The tariffs are just the latest action Trump has taken that undermine the economics of renewable energy. The administration has already decided to pull the U.S. out of the international Paris climate agreement, rolled back Obama-era regulations on power plant-emissions and passed sweeping tax reforms that constrained financing for solar and wind. The import taxes, however, will prove to be the most targeted strike on the industry yet.

“Developers may have to walk away from their projects,” Hugh Bromley, a New York-based analyst at Bloomberg New Energy Finance, said in an interview before Trump’s decision. “Some rooftop solar companies may have to pull out” of some states.

U.S. panel maker First Solar Inc. jumped 9 percent to $75.20 in after-hours trading in New York. The Tempe, Arizona-based manufacturer stands to gain as costs for competing, foreign panels rise. First Solar didn’t immediately respond to a request for comment. The Solar Energy Industries Association also didn’t immediately respond.

The first 2.5 gigawatts of imported solar cells will be exempt from the tariffs, Trump said in a statement Monday. The president approved four years of tariffs that start at 30 percent in the first year and gradually drop to 15 percent.

The duties are lower than the 35 percent rate the U.S. International Trade Commission recommended in October after finding that imported panels were harming American manufacturers. The idea behind the tariffs is to raise the costs of cheap imports, particularly from Asia, and level the playing field for those who manufacture the parts domestically.

For Trump, they may represent a step toward making good on a campaign promise to get tough on the country that produces the most panels — China. Trump’s trade issues took a backseat in 2017 while the White House focused on tax reform, but it’s now coming back into the fore: The solar dispute is among several potential trade decisions that also involve washing machines, consumer electronics and steel.

“It’s the first opportunity the president has had to impose tariffs or any sort of trade restriction,” Clark Packard, a trade policy expert at the R Street Institute in Washington, said ahead of the decision. “He’s kind of pining for an opportunity.”

Trump’s solar decision comes almost nine months after Suniva Inc., a bankrupt U.S. module manufacturer with a Chinese majority owner, sought import duties on solar cells and panels. It asserted that it had suffered “ serious injury” from a flood of cheap panels produced in Asia. A month later, the U.S. unit of German manufacturer SolarWorld AG signed on as a co-petitioner, adding heft to Suniva’s cause.

https://www.youtube.com/watch?v=7Km7eFCl5ZQ

An attorney for Solarworld didn’t immediately respond to a request for comment.

Suniva had sought import duties of 32 cents a watt for solar panels produced outside the U.S. and a floor price of 74 cents a watt.

While Trump has broad authority on the size, scope and duration of duties, the dispute may shift to a different venue. China and neighbors including South Korea may opt to challenge the decision at the World Trade Organization — which has rebuffed prior U.S.-imposed tariffs that appeared before it.

Lewis Leibowitz, a Washington-based trade lawyer, expects the matter will wind up with the WTO. “Nothing is very likely to stop the relief in its tracks,” he said before the decision. “It’s going to take a while.”

The solar industry may also attempt a long-shot appeal to Congress.

“Trump wants to show he’s tough on trade, so whatever duties or quotas he imposes will stick, whatever individual senators or congressmen might say,” Gary Hufbauer, a Washington-based senior fellow at the Peterson Institute for International Economics, said by email before the decision.


The conversation was getting heated and it ended with the statement “Diesel Generators are cheaper than the Electricity Company of Ghana (E.C.G) and some businesses in Ghana run on generator power even when the grid is available”……………………..

This was what I learnt from a conversation I had in 2014 with an associate of mine who ran a medical practice in East Legon at the time.I was actually doubtful of his claims because of his political affiliation and therefore brushed these claims aside.

Whilst Ghana appears to have recovered, somewhat, from the power crisis, many businesses are, ironically, turning to generators which they find to be cheaper than the national grid. Fast forward to 2017 ,whilst running several power audits across Ghana ,I  come across several businesses who run on diesel generator power 2-3 times weekly as a cost cutting strategy for electricity. Some of these business claim to be able to save up to 25% on power costs by this strategy alone.

With Ghana’s prepaid metering system, it’s easy to compare how much is spent on either generators or the national grid on weekly or even daily basis .The bare facts are that  that solar  has gotten cheaper today than it was years ago and with an average 5.5 hours of effective sunshine daily in Ghana, businesses  should seriously consider quality Grid-tied solar power systems such as Fronius .With these solar power systems you don’t need to even worry about rising utility tariffs  or fuel prices.

Most Ghana based business shy away from Solar power because of the perceived high initial costs. Grid-tied solar often has fewer upfront costs than an off-grid system. For one, it can cost less to install a grid-tied system because it does not require batteries, as off-grid does. For another, it’s more flexible, as you don’t necessarily have to install the number of panels you will need to produce all your energy needs right away. people choose grid-tied solar power  systems when they know they could only afford a certain number of panels at a given time, so their goal is to lower their electricity bills—but not eliminate them entirely just yet.

A fully installed 20Kw Fronius Grid-tied solar inverter in Accra-Ghana

Over time, you can always add more panels as you find the financial resources to do so.This solar power option is excellent  for  commercial operations that have a high power demand during daytime hours.Up to 65% percent of power demand for most offices in Ghana is for air-conditioning /cooling due to high daytime temperatures  and humidity.  Our research indicates that grid tied solar can be at least 45% cheaper than off grid solar power systems and you can save Ghc 24,000 per annum by the deployment of just 10kwp.We are able to calculate the savings because of the inbuilt monitoring systems in these intelligent devices built by Fronius BV of Austria.

Nocheski Solar is dedicated to using products  that have a strong, unrivalled reputation for technical innovation, reliability, and build quality. Our products are widely considered to be the professional choice for independent electric power.You may call +233244270092  email for further information